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PREFACE

In the curricular structure introduced by this University for students of Post-
Graduate Degree Programme, the opportunily to pursue Post-Graduate course in any
subject introduced by this University is equally available Lo all learners. Instead of
being guided by any presumption aboutl ability level, it would perhaps stand to
reason if receptivity of a learner is judged in the course of the learning process, That
would be entirely in keeping with the objectives of open education which does not
believe in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate level in different
subjects are being prepared on the basis of a well laid-out syllabus. The course
structure combines the best elements in the approved syllabi of Central and State
Universities in respective subjects. It has been so designed as o be upgradable with
the addition of new information as well as resulls of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the
preparation of these study materials. Co-operation in every form of experienced
scholars is indispensable for a work of this kind. We, therefore, owe an enormous
debt of gratitude to everyone whose tireless efforts went into the writing, editing and
devising of proper lay-out of the materials. Practically speaking, their role amounts
to an involvement in 'invisible teaching'. For, whoever makes use of these study
materials would virtually derive the benefit of learning under their collective care
without each being seen by the other.

The more a learner would seriously pursue these study materials, the easier it
will be for him or her to reach out to larger horizons of a subject. Care has also been
taken to make the language lucid and presentation attractive so that they may be rated
as quality self-learning materials. If anything remains still obscure or difficult to
follow, arrangements are there to come lo lerms with them through the counselling
sessions regularly available at the network of study centres set up by the University,

Needless to add, a great deal of these efforts is still experimental—in facl,
pioneering in certain areas. Naturally, there is every possibility of some lapse or
deficiency here and (here. However, these do admit of rectification and further
improvement it due course. On the whole, therefore, these study materials are

expected o evoke wider appreciation the more they receive serious attention of all
concerned.
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Vice-Chancellor
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Unit-1 0O Compactness

Introduction

In this chapter we mainly deal with the notion of compactness and some of its variants, .
We start with the idea of nets and filters which was in the Topology course in PG-1, and
present some more definitions like cluster points of nets, subnets, ultrafilters etc. Which will
help us to establish some more characterizations of compactness in topological spaces. Next,
the notions of three more types of compactness, namely countable compactness, Frechet
compactness and sequential compaciness are introduced which arise naturally from equivalent
criteria of compactness in Real line with which you are already aware of. In a topological space
all the four types of compactness turn out to be distinct and we establish their interrelationships.

In the remaining part of the chapter, we deal with compaciness in stronger structures,

First, we consider metric spaces and establish equivalent criteria of compactness by showing

that all the four types of compactness are equivalent in metric spaces.

1.1 More on nets and filters

First, recall the following definitions from the earlier course on Topology,

Definition. Let (D, = ) be a directed set and X be a non-empty set. A mapping s : D
— X is called a net in X. It is denoted by {s : n €D} or simply by {5},

A net {s,}, is said to be eventually in 4 € X if 3 n €D such that 8, €A, Wne p with
H 2N,

A net {s }, is said to be frequently in 4 € X if for each m € D, 3 an n €D with n
= m such that s, € 4.

Definition. Let X be a topological space. A net {s, }, is said to converge to x, X if {8}
is eventually in every neighbourhovd of x, and we write lim s = x,, X, is called a limit point

or just a limit of {s } .
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Definition, A point x, in a topological space X is said to be a cluster point of the
net {s,}, if it is frequently in every neighbourhood of x,.

From the definition, it is clear that if a net {s,} is convergent then its limit points

Al
are the only cluster points of the net. But existence of a cluster point does not necessarily
mean that the nct is convergenl. You have already come across such examples. Recall
that taking D = N, we had non-convergent sequences which have convergent

subsequences and the limits of those convergent subsequences are in fact cluster points.
This takes us to the next definition.

Definition. A net {f, : @€ E} is said to be a subnet of the net {s, : ne D} if there
i5 # mapping i : £ — D such that

(a) 1 = s0i, _

(b) for any m € D there is o; € £ with the property that (o) = m for all we E wilh
o= D'.ﬂ

Theorem. Let X be a topological space and {5, : ne D} be a net in X. A point Xt
X' is a cluster point of {s, : #eD} iff some subnet of {5} converges 1o Xy

Proof. Let x; be a cluster point of the net {5, : ne D}, Denote by Nxﬂ the family
of all neighbourhoods of x; and let £ = {(U, n) : neD and UEqu}' For (U, n) and (¥,
p) in E, define (U, n) 2 (V, p) ilf Uc ¥V and n = p in (D, 2). It is easy to verify that
(E, =) is a direcied sel,

Let (L), m) €E. Since x!'] is a cluster point of {5 : neb)} it is frequently in . So

e L. Now define the

there is an element Py gy 0D owith p, 0 = m such that it

mapping:s L E— Dandt: E — X as follows ; (U, m) = Byy, gy And (L, m) = L
Then (s0i) (U, m) = s(i(L), m)) = S - SO L= s0i, Finally let meD. Choose any Ue
Nx, so that (U, m) e £ Now, let (F, n) €E and (V, n) = (U, m). Then i (V, n) = pyje

2 n z m. This shows that {#,, . . (U, m) €k} is a subnet of the net {5, : neD}.

Now let U be any neighbourhood of x,. Choose any meD so as to get an element

(U, meE. Now, for any (V; n) € £ with (V, n) = (I, m), we have v oy = Sewn € Fi=

)
L7 which shows that the net {I{U_ m + (Us m) € E} converges to xg.
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MNext suppose that some subnet {7, : € E} of the net {s : n €D} converges to
xg Then there is a mapping 7 : £ — D satisfying the conditions for a subnet. Let U
be any neighbourhood of x, and me D. Since {1, : e E} converges to x;, 3 o, F such

that t, el Vo z o, ae k. Again by () of the above definition 3 a,e & such that i(cx)

=mvaz o,, aell, Choose o, € £ with o, 2 oy, o, Take 0 with © = tty. Then i(a)
2z m and (, = (s0i) (0) = 5, €U So the net {s @ neD} is frequently in U. Hence x,
is a cluster point of {s : neD}.

Exercise A net {5 : n €D} is called a maximal net (or an ultranet) in X if for any

A C X il is either eventually in A or in 2\, Prove that if x; is a cluster point of a maximal

net {s, ' n €D} then it is convergent to x,.

Solution : Let [V be any neighbourhood of the point x,. Since {s : neD} is maximal,
so either it is eventually in U or eventually in Y\UL I[ possible, suppose that it is eventually
in AU, Then 3 me D such that s eX\U tor all peD), with n = m. But as x; is a cluster
point of {s, : neD}, we can find a p 2 m such thal 5, € U7 which is & contradictlion.
Therefore {5, : ne D} is eventually in U. Since this is true for every neighbourhood U
of x,, so {5, : neD} converges to x,.

We now move to the idea of filters. Recall the basic definitions.

Definition. A nonempty family <7 of subsets of X is called a filter in X if (i) ¢g <%
(iNd, BecF=2dnBed (li)d edf, 4 c B= Bed®

A filter <& is said o converge to x; in a topological space X if every neighbourhood
of x, belongs lo &%

Definition. A point x,X is called a cluster point of a filter & if for every
neighbourhood [/ of x, and FEc# U n F # ¢ or equivalently x.€ F, ¥ FeoF

Definition. A filter ©# in X is said to be an ultrafilter if if is not properly contained
in any other filter in Y.

We will now prove some inleresting results about ultrafilters.

Theorem : Let X be a non-emply set and -z be a family of subsets of X with finite
intersection property. Theén there exists an ultrafilter ™ in X containing -+ .
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Proof : Let C denote the collection of all families of subsets of X with finite
intersection property and containing the family 7. For o, &% in C, Let o, > i

iff <% © oF. It is easy to see that (C, 2) is a partially ordered set.

Let 5 be any totally ordered subset of C. Write o, = U{aF : cFe B}. Clearly .7
C o4 Let {4, 4,,.., 4.} be any finite subfamily of <%, Without loss of generality,
suppose A7 (i = 1, 2, .., n) where <#eB. Since I is totally ordered, Ja peN, < p= 1",
such that d:?i; 2 ¥ wi=1 2, ..,n Then A Ay A"Ecﬂ; and so A,MA,M.. A, # §.
Thus <& also has the finite intersection property and hence a# e, Clearly = is an
upper bound of . Therefore by Zom’s Lemma € has a maximal clement =+ (say).

Clearly ¢ & &%, Lel A, Be o *, If &% = &% U{AnB} then < has fip and contains
e - S0 #eC. But as ¥ is maximal, we must have &, = &* and hence 4  Be -7+,

Again let 4 €c#* and A © B. By similar argument we can show that Be «7*. Therefore
<+ is a filter, '

Finally,.nnt:} that if <& is any filter containing #* then «# C oF *C &' and so
& €C. Since &F* is a maximal element of C so we must have <% = &, This proves
that &#* is an ultrafilter,

Theorem : A filter &7* is an ultrafilter in X iff any subset 4 of X which intersects
every member of &% belongs to 7%,

Proof : First suppose that ¢#* is an ultrafilter in X, Let 4 be a subset of X which
intersects every member of &#%,

Let &, = {C € X : 4 1 B.C C for some B € #*}. Clearly ¢ ¢ o7, F*c o and
AedF, Let C,, C; € &7, Then AnB, © €| and ANB, c C, for B, B, €c#* Then B =
B m By #* and we have CnC, D (A n B) n(d ey By = A (B NnB)=4mB
~which implies €, €, € &, Again if Ce & and C © €' (€ X) then 3 B € o7+ such that
AnBcCandsodn Bc C which implies C'e &%, Therefore =%, is a filter in Y.

Since oF* is an ultrafilter so &% = % and so Ae oF*,

Next suppose that the given cendition holds. Let &% be any filter in X containing
o7, Let 4 €5 If B € 7 then e &Fand so 4 M B # ¢. So by our hypothesis 4 € 7.
This shows that & = ", Hence <% is an ultrafilter.

10



Exercise : Let &#* be an ultrafilter in X and 4, B be two subsets of X such that
A w B ed#* Then either 4 €cF* or Be o7%,

Solution : Suppose that A2 c#*. Consider the family & = (C Cc X1 4 U C e ¥},
Then Be o, Since 4 & ¥, ¢ . Let C|, C,ecF,. Then 4 W Cps 4 W G o* and so

A (€N C)=AuwC)ndu ;) e This proves that C\n Cye o, Again
let C & o and C ' Then 4 W C eF* Butsince A w Ccdw , sod et
which then implies C'e &7, So &%, is a filter in X.

Finally as we can see, C € #* = A U Ced#* and so Ce o, Thus =#*cex, But
as @#* is an ultrafiller so & = <F*. Therefore Be 7%,

Exercise : A filter &% in X is an ultrafilter iff for any ACX either A€ &7 or Y\de =%,

Solution. First suppose that = is an ultrafilter. Let 4 C X, Since Xe * and X = 4
U (X)) so either 4 * or X\de &#*, Conversely, suppose that the given condition holds.
Let & be a filter containing <#*, If &F* C =& then we can choose some 4 € o such that
A & &#*. But then by the given condition X\de ¢&#* which implies X\de o#. Then ¢ = A
(X\d) €<# which is a contradiction. Hence <#* = & and so #* must be an ultrafilter,

1.2 Compaciness

We first recall the following definitions and a result from earlier Topology

course.

Definition : A topological space (X, T) is said to be compact if every open covering

of X has a [inile subcovering.

Compactness can be characterised "in terms of *“‘the finite intersection property’* of

closed sets,

Definition : (Finite intersection property) : A collection of subsets {FF, : vea} of
a given sel X (a being an indexing set) is said to possess the finite intersection property,
if every finite sub-collection of {F } has non-empty intersection.

Theorem : A topological space (X, ©, s compact il and only if for every collection
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of closed sets {F, : vea} in (X, 1), possessing the finite interscction property, the
intersection M{#, : vEa} of the entire collection is non-empty.

We now prove the following characterizations of compactness.

Theorem : Let (X, 1) be a topological space. Then the following statements arc
equivalent.

(i} X is compact
(ii) Every filter in X has a cluster point
(iii) Every ultrafilter in X converges.

Proof : (i) = (ii) : Suppose that X is compact. Let =F be any filter in X, Let =%
= {4: Ae &F}. Then <#* is a family of closed sets with finite intersection property. Since
X is compact, so

A AedF) # ¢

Choose a point x;, in M| A : Ae 5F}. Then Xo€ A,¥ A€ & and from definition X,
iz a cluster point of oF.

(ii) = (iii) : Let = be an ultrafilter in X, By (ii), =% has a cluster point x; in X

Let U be any neighbourhood of x;. Then Un F = ¢ ¥ Fe % . But then we must have
Ue o# . This shows that o# converges to x,.

(iii) = (i) : Finally suppose that (iii) holds. Let & be a family of closed sets in

X with finite intersection property. Then there exixts an ultrafilter -+ containing <% By

(iii), & converges to a point x,€X. Then for any neighbourhood {/ of x,, Ue =% , Take

" any Fe o Then Fe = and so UnF # ¢, This shows that X, Is a limit point of F and

so x, € F. Bul since each Fe o is closed, x; € F=F. This is true for any F €< and
50
F: Fedf} #
This proves that X is compact.
We now use the concepl of ultraftlter, developed so far, to prove the following

important theorem due to Tychonoff.
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Theorem (Tychonoff Product Theorem).

Let {X, : aea} be a collection of topological spaces. Then the topological product
space X is compact il each X is so.

Proof : If X is compacl, then clearly each factor space A7, being continuous jmage
of X under the projection map p, : X — X , is compact,

Conversely, let cach space X, be compact. By the above theorem it suffices to show
that any ultrafilter <on X converges in X. For each ae A, 3, = {p (F) : Fe o7} is clearly
a base for a filter &% on X_. We claim that &% is an ultrafilter on X, For this, we need
to show thal for any subset 4 of X, either A€ &% or X \de o . Let us write B = oA,
Since ¥ is an ultrafilter on X, either Be < or X\Be &7 Conscequently, either 4 = pAB)E
B, CF, or (M) % Hence J7, is an ultrafilter in X, for each e A. As each X, is
compact, <# converges to some x €X , for each aeA. Then =F converges to the point

x = (x,),., in X and hence X is compact.

1.3 Countable Compactness

We now look into another type of compactness which is weaker than compactness
but is equivalent to compactness in the real line.

Definition : A topological space (X, 1) is said lo be countably compact, il every
countable open covering of X has a finile subcovering.

We shall obtain several necessary and sufficient conditions for a topological space
to be countably compact. One such condition is given in terms of the concept of cluster
point of a sequence. A point p is called a cluster point of an infinite sequence {x, : n
=1, 2,...} in a topological space (X, 7) if, for any given open set I/, containing p, and

any posilive integer r, there always exists a positive integer m > r, such that x & U\
Theorem : For a topological space (X, 1) the following conditions are equivalent;
(a) (X, T) is countably compact,

(b) Every countable aggregate of closed sets, possessing the finile intersection
property; has a non-empty intersection in (X, T).
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(¢) Every descending chain of non-empty closed sets, £, 5 F, D .., has a non-empty
intersection in (X, 7). (Canlor’s intersection theorem)

(d) Every infinite sequence in X has a cluster point in X.
(¢) Every infinite set § X has an w-accumulation point in X

Proof : (a) = (b) : This is quite similar to the corresponding theorem on
compacimess.

(b) = (¢} : Clearly {F, : n €M} is a countable collection of closed sets with the
o
finite intersection property and hence by (b), (# #b
n=l1

(e) = (d) : Let {x,} be a sequence in X and Lét A = A{x, :m=>n} for each nel.

Clearly { 4 , +n €N} is a descending sequence of nonempty closed sets in X, By (e},

o
there is a point a= ﬂ A, . We claim that a is a cluster point of the given sequence. Indeed,
=1

tor any open neighbourhood U of & and any me M, we have some xed, N Uasacd,,
Then n = m such that x e U.

(d) = (a). If possible, suppose (a) does not hold, Then there is a countable open
covering {IJ , - nEM} of X having no finite sub'nuw:ring. LetC = AU w.ul). Clearly,
{C, : n €M} is a descending sequence of nonempty closed sets in .X. Choose TEL
for each m €M, Then the sequence {x,} has a cluster point x (say) in X (by (d)). Since
{U, : n €N} is a cover of X, 3 meM such that xe U

m*

e C, = x gU . Thus x cannol be a cluster point of {x, : neM}, a contradiction,

Now, m = m = C ot =ix

To complete the proof, il now suffices to prove “(d) & (e)’ which we do as follows:
(d) = (¢) : Given an infinite set § in X, we can always consiruct a sequence ta, }
in § such that @, # a for n # m (1, m =M). By (d), this sequence has a cluster point

p (say) in X. Then erery neighbouthood of p contains infinitely many terms of the sequence,
i.e, contains infinitely many points of §. Hence p is an w-accumulation point of &

(e) = (d) : Let {a,} be a sequence in X and let 4 be the set formed by the values
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taken by the sequence. If 4 is a finile set, then there is an element a such that a, = u
for infinitely many natural numbers »n. Obviously, then a is a cluster point of the
sequence. If A is an infinite set, then by (e), 4 has an w-accumulation point p (say).
Obviously, p is then a cluster point of {a }.

Exercise

(a) A subspace of a countably compact space need not be countably compact,
(b) Every closed subspace of a countably compact space is countably compacl,

{¢) The union of a finite collection of countably compact subspaces of a topological
space is a countably compact subspace.

Solution : (a) The closed unit interval [0, 1] is compacl, by Heine-Borel theorem,
hence it is also countably compact. The subspace (0, 1) of [0, 1], is, however, not
countably compact.

1.4 Sequentially Compact and Frechet Compact spaces

Finally we look into two types of compaciness, one of which is defined by using
sequences and the other defined by using the idea of limit points of sets.

Definition : (Sequentially Compact) : A topological space (X, 1) is said to be
sequentially compact, if every infinite sequence in X contains a convergent subsequence,

Definition : (Frechet Compaet) ¢ A topological space (X, 1) is said to be Frechet
compact (or B-W compact i.c., Bolzano-Weierstrass compact), if evcry infinite subset
of X has an accumulation point.

Theorem : (a) Every closed subspace of a sequentially compact space is sequentially
compact.

(b) Every closed subspace of a Frechet compact space is Frechet compact,

It follows from the following example that ;

(i) a subspace of a sequentially compact space need not be sequentially compact,
and (ii) a subspace of a Frechet compact space need not be Frechet compact.

Example : Let [ be the sel of reals, and v consists of (i) all those subsets of T,
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which do not contain 0, and (ii) the 4 subsets B\{1, 2}, E\{1}, BE\{2}, and IB. Then
(IR, v) is a first countable, Lindeloff space. Any open covering V of R must include at
least one of the sets in (ii) (in order that 0 may be covered). Let & be such a set for
the open covering V' of R, then M\G consists of al most two points 1 & 2, Let J7, &
H, be two members of V, containing the points 1 & 2 respectively. Then (G, H, H}
forms a finite subcovering of V' for B, Hence (R, v) is compact. let § = B\{0}, then Ll;e
subspace (S, v,} is not a Lindeloff space.

As v_is the discrele topology on 8. S is an infinite set having no accumulation point
in 5. Hence the subspace (5, v} is not Frechet Compact. The space (B, v) is also
sequentially compact. In fact, any infinite sequence {v ;i = 1,2 ...} in R is of any one

ol the following: lwo lypes ;

(i} x; # 1 and 2 for all i, except for finitely many values of i and the sequence {x,
0= 1,2 ..} s itself convergent. Converging to the limit 0;

(iiy x, = | or 2 for infinilcly many values of i, and then there exists an infinite
subsequence of {x, : i = 1, 2 ...}, which converges to the limit | ar 2.

1.5 Mutual dependence of different types of compactness

MNow we investigate the interrelationships between the four types of compactness

we have come across,

Theorem : (a) Every compact space is countably compact and also a Lindeloff

space.
(b) A countably compact Lindeloff space is compact,

Proof : (a) Let (X, T) be a compact space. Since for every open covering of X, there
cxists a finite sub-covering, the same is true for every countable open covering. Hence
(X, T) is countably compact. Also, since a finite sub-covering is necessarily a countable

sub-covering, it follows that (X, 1) is also s Lindeloff space.

(b) Let (X, T) be a countably compact, Lindeloff space. Let U/ be any open covering
of X. As (X, t) is a Lindeloff space, there exists a countable subcovering V of U for
X. Again, since (X, 1) is countably compact, for the countable open covering F of X,
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there exists a finile subcovering W. Then W is a finite sub-covering of U for X. Hence
the space (X, T) is compact.

Theorem : (a) A countably compact space is Frechet compact.

(b) Any Frechet compact T -space is countably compact.

Proof : (a) Let (X, T) be a countably compact space. Then every infinite subset §
of X has an w-accumulation point in X ; thus § has an accumulation point in .X. Hence
(X, 1) is a Frechet compact space.

(b) Let (X, 7) be a Frechet compact, T,-space, and S be an infinite subset of X, As
(X, 7) is Frechet compact, § has an accumulation point x (say) in X and since (X, 1)
is a T,—space, the accumulation point x is an @-accumulation point. Hence (X, 7) is
countably compact.

Theorem : (a) A sequentially compacl space is countably compact.

(b) Any countably compact, first countable space is sequentially compact.

Proof : (a) Let (X, 7) be a sequentially compact space and let o =10, 20 %
be any infinite sequence in .X. Then the sequence {x, : /= 1,2 ...} contains a cnn.wrgent
subsequence, The limit of the convergent subsequence is a cluster point of the sequence
fx. : i=1,2, ...}, Hence (X, 1) is countably compact.

(b) Let (X, ©) be a countably compact, first countable space. Let {x :i=1, 2, ...}
be an infinite sequence in X. Since (X, 7) is countably compact, it is also Frechet compact;

hence the infinite sequence {x, : i = I, 2 ..} has an accumulation point x (say) in X
Again, since the space (X, 1) is first countable, it follows that there exists a sub-sequence

ix-‘fx = 3,2,."} of the sequence {x, : i = 1, 2, ...}, such that lim x; =x. Thus the sequence

{x, ;i =1, 2, ...} contains a convergent subsequence {xh ::'=l,2,,..}1 Hence the space

(X, 1) is sequentially compact.

Note : In proving the part (b) of the above theorem, we have merely used the
property that (X, T) is Frechet compact (in place of its countable compactness). Hence,
cvery Frechet compact, first countable space is sequentially compact.
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In view of the fact that a second countable space is first countable and also a
Lindelofl space, it follows that :

Theorem : For a second countable T|-space, any one of the four properties (i)

compaciness, (ii) countable compactness, (iii) sequential compactness and (iv) Frechet
compactness, implies the other three.

If can be shown by constructing suitable counter-examples that no other
direct implication exists between the Lindeloff property and the four compactiess
properties.

Exercise : Give an example of a second countable (and hence Lindeloff), Frechet
compacl space that is not countably compact.

Solution : Consider the lopological space (M, T). Here M is the set of natural numbers
and T is the odd-even topology on M. The topology T is generated by the base B = {$}
U {@n—1,2n) :n=1,2, .} The space (M, 1) is second countable, since the oper
base B of 7 is countable. Also B forms a countable open covering of M, for which there
is no finite sub covering, hence (N, 1) is not countably compact.

Let P be an infinite subset of I and let p € P. Let now, x = p + 1 if p is odd, and
x=p — | if p is even. Then every open set, containing x, also contains p ; hence x
is an accumulation point of P in . Consequently, the space (M, 1) is Frechet compact,

Exercise ; Give an example of a compact Hausdorff space that is not sequentially
compacl,

Solution : Let I denote the closed unit interval [0, I} with the subspace topology
g, induced by the usual topology o of the real number space (R, o), Let (X, 1) = I1
I, : I, = I, reR}. Thus, X = [' is the uncountable produect of 1. Hence X is compact
and T, since I is so. Again X is not sequentially compacl, since the sequence of functions
[ X defined by f(x) = the n'™ digit in the binary expansion of x, has no convergent
sub-sequence.

For, suppose {f,,k } is a subsequence which converges to a point f X, Then, for each

xel, _f;% (x) converges in [ to flx). Let p € I have the property that U.mr{p}sﬂ' ar 1
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according as whether & is odd or even. Then {u,,k {p}] is 0, 1, 0, 1, ... which cannot

CONVETrgE.

1.6 Compactness in Metric spaces :

In the final section of the chapter we consider the four types of compactness in metric
Spaces.

Theorem : In a metric space (X, d), the concepts of second countability, separability
and Lindeloftness are equivalent.

Proof : Suppose (X, d) is separable. Let 4 = {x} be a countable dense subset ol
X. Let B = {B(x; ») ; r-rational, i = 1, 2, ...}. Then B is countable. Also if U is any open
set and xe U, 3 an € > 0 such that B(x, €) ¢ U. Since 4 in dense in X, we can choose

Xy s.t. d(x;, x) < €/2. Then it is casy to show that xe B(x,, €/2) c U and so B is also
base in X. Hence X is second countable.

It is known that a second countable space is Lindeloff. Now let (X, o) be Lindéloff.

Let £ =%. From the open cover {B[,x,l) 55 X} of X, we can find a countable covering
n

{B(xf.i] :IEA}. Let 4, = {x,; ieN}, Then 4= UAl is a countable dense subset of
5 =l n
X and so X is separable.

We now. introduce the following definition.

Definition, A finite subset F of a metric space X is called an e-net for X if X < W {B(x,
E) : xEF} X is called totally bounded if it has an e-net for every & > 0.

Theorem : A countably ‘compact metric space is totally bounded.
Proof : If possible let (X, d) be not totally bounded. Then 3 an € > 0 such that there

is no e-net for X. Let p, €X. Clearly X & B(p,, £). Choose p,e X\B(p,, €). Since {p,. p,}

is not an g-net, we can find p,e X such that dp,, p;) 2 &, dp,, p;) = & Proceeding in
this way we gel a sequence {p } of distinct points in X such that d(p, )2 E T # )
Since a melric space is first countable, so countable compactness of X implies sequential
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compactness of X But evidently the sequence {p,} has no convergent subsequence in
A. This contradicts the facl that X is countably compact.

Iixercise : Prove that a totally bounded metric space X is separable,

o
Solution : For each neM, X has an %—m:t F.Llet F=|)E, . Then F is clearly

H=l

countable. Let xeX and let & = 0 be given. Choose me ™ such that i’:: 8, Now since
F isa %-nct, 3 a weF_ such that dix, w) < ﬁ{ & i.e. weB(x, 8). This proves thatl

F'is also dense in X and so X is separable,

Theorem. For a metric space, compactness, countable compactness, Frechet
compaciness and sequential compactness arc all equivalent.

Note, A totally bounded metric space is not necessarily compact. If 4 = fxe @ : 0
=x =1} and d* = d, , where d is the usual metric, then (4, d*) is totally bounded but
not compact.

Exercise : A set 4 C (X, d) is called relatively compact if 4 is compaet in X. Show
that a relatively compact set 4 in a metric space (X, 4) is totally bounded,

Recall that in a metric space (X, d), a sequence {x } is called a Cauchy sequence
ifforanye>03akel st.manz2k= d(x , x ) < €. Every convergent sequence
is Cauchy. Also a Cauchy sequence having a convergent subsequence is also
convergent, L

Definition : (X, d) is said to be complete if every Cauchy sequence in X converges
in X.

Theorem : A compact metric space is complete,
Theorem : If (X, @) is complele and totally bounded then it is compact.

Proof : We show that (X] &) is sequentially compact. Let {x,} be a sequence in X
Since X is totally bounded, X" is contained in the union of a finite number of open balls
of radius 1. At least one of them must contains a sub-sequence of {x }, say (x, x,,
...}, Again from the property of total boundedness of X, we can find an open ball of
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PR, [y :
radius Ewhich contains a subsequence of {x, ; nelN}, say (x,,, n =1, 2, ..}. Proceeding

in this way, by induction we obtain sequences {x,,; i =1, 2, ...} (k= 1, 2...) each sequence
is a subsequence of the predecessor and the A" sequence is contained in a ball of radius

1 ;
T It is easy lo see that {x,; k=1, 2, ..} is a subsequence of {x,} which is Cauchy
in X and so is convergent in X, since X is complete. Hence (X, ) is compact.

Mote. The space [, is complete but not totally bounded and so is not compact.

Theorem : A metric space is compact iff it is complete and totally bounded.

Exercise : Prove that Lindeloff'ness is not a hereditary property.

Solution : Let X be an uncountable set and let x,€X be chosen. Define a topology
T on X as follows : (i) ¢, X €7 (ii) 4 (C X) et iff x;@4. First we will show, that (X,
T) is a Lindeloff space. Let v be an open cover of X, Since the only open set containing
x, is X itself, so Xe v and {X} is the required subcover. Now if ¥ = X\{x,} then (¥, T)
is a discrete topological space. Taking v, as the collectioin of all singletons from T, We
sec that v, cannot have a countable family which also covers 7.

Group-A
(Short questions)

. Show that the collection <#(p) of all subsets of a set X which contain a given
element peX is an ultrafilter on X,

F
2. Show that in a discrete topological space every neighbourhood filter is an
ultrafilter,

3. Prove that the net associated with an ultrafilter is a maximal net.

4. Show that a filter &# converges to a point x&X iff every ultrafilter containing o#
converges fo x.

5. Give an example of a totally bounded space which is not compact.

6. Prove that continuous image of a sequentially compact set is sequentially
compact.
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. Examine whether {{a}, {b}, {a, b}, X} where X = {a, b, ¢} is a filter.
. Give an example to show that sequential compactness is not a hereditary
property,

+ Prove that a finite union of compact subspaces of a topological space is compact.

Group-B
(Long questions)

Prove that every filter <& on X is the intersection of all the ultrafilters finer than
o8

. For an ultrafilter <% on a set X prove that n {F : Fe &#} is either empt}r or a
singleton subset of X,

. For a topological space (X, ), prove that following are equivalent,
(i) X is compact.

(ii) Every net in X has a convergenl subnet.

(iii) Every.muximal net in X converges in X

. Let (X, T) be a topological space and Ac X, Prove that 4 is T-open iff 4 belongs
to every filter which converges to a point of A.

. If {f,}, is a sequence of real valued continuous functions on a compact
topological space X and f, — f on X then prove that J, = [ uniformly on X.

. Show that a subspace of R" is bounded iff it is totally bounded,

. It (X, d) is a complete metric space and 4 X is totally bounded then prove
that 4 is relatively compact (ie. 4 is compact). «

Prove that a subnet of a subnet of a net {x : neD} is a subnet of {x : neD}.

. Give an example to show that the continuous image of a Frechet compact space
need not be Frechet compact. If /' : X — ¥ is a continuous bijection and X is
Frechet compact, is it true that ¥ is also Frechet compact? Justify.
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Unit-II O Compactification

Introduction

In this chapter we start with the idea of local compactness. Though the definition was
mentioned in the basic Topology course, here, it is dealt with in full detail as locally compact
spaces are more common than compact spaces and they have many interesting properties.
We then consider the notion of compactification. Though one-point compactification has been
already included in the earlier course, it is again described in detail for the sake of
completeness. We then consider two more ideas of compactification, which are much deeper
and which have played important role in the advancement of the subject, The first type of
compactification, that is dealt with, is Stone-Cech compactification which happens to be the
largest Hausdorff compactification among all possible Hausdortf compactifications of a given
Tychonoff space and there-in lies its importance. Another very strong resull is the Stone-
Cech theorem showing that any continuous function on a Tychonoff space can be extended
to its Stone-Cech compactification. Finally we consider Wallman's compactification which
is different from the other two compactifications in view of the use of ulirafilters in its

construction.

2.1 Locally Compact spaces

A topological space is said to be locally compact if each point of the space has at least
one compact neighbourhood.

Clearly every compact space is locally compact but the converse is not true, as R with
usual or discrete topology is locally compact bul not compact.

Theorem : 1. Let X be a locally compact space. The [amily of all closed compact
neighbourhoods of each point x of X forms a neighbourhoods basis al x if in addition X is
regular or HausdorfT,

Proof : Let xe X, Denote by 9 the family of all closed and compact neighbourhoods
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of x. Since X is locally compact, there is a compact neighbourhood C of x.
(1) First suppose that X is a regular space. Let U be any neighbourhood of x. Then
(UNC) is an open neighbourhood of x. So there is an open neighbourhood ¥ of x suct

thatxe Vc 7 c (Un C). Since V< C and C is compact, so ¥ is also compact, Clearly

I/ is then a closed compaet neighbourhood of x and so F €% Also ¥ c U and hence
% is a neighbourhood basis at x.

(I) Next let X be T, and 7 be any neighbourhood of x. Let us take W = (Ui O,
Then W is an open neighbourhood of x. Since C is compact and X is L5, C is closed,

Then W c € = W < C which implies ¥ is compact.
Write ' = W\W. Then F is a closed compact set and xg F. Since X s 75, 3 two open
sets IV, G, such that
xel, F.e G, and ¥, N G, = .

let V=WV, and G = F n G,. Then V is an open neighbourhood of x, F
Gand ¥ N G = ¢. Now

VeWMGec wiWGc wW\F=WcU
and V¥ ¢ W\Gc Wec W cC
=(F NnX\G)(' Vc V, € X\ G, closed), which implies that 7 is compact.
Hence ¥ €%, Since ¥ c U, hence 9% forms a neighbourhood basis at x,
Exericise : Every locally compact T, space is regular.
Solution : Let X be a locally compact T, space.

Let xeX and U be a neighbourhood of x. Then proceeding exactly in the same as

in the last part of the proof of theorem 1, we get two open neighbourhood ¥ and W,
and an open set G, such that.

VeW\GC W c U, where G=WnG,. Thus xe¥ c P U which proves that X
is regular.
Theorem 3 : A locally compact regular space is completely regular,

Proof : We prove the theorem by the following steps.
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(1) Let 4 be a compact subset of X and U be an open set with 4 © U Let x=4,
Since X is locally compact, there is a closed compact neighbourhood W, of x (which
is also closed by from theorem 1) such that W,  U. Now the collection {W° ; x € A}
from an open cover A, Since 4 is compact, there exists a finite number of points 5

o o o n -
Xge o %, Such that 4 ¢ W, UW, L., U W, . Write =UW\';-' Then V is an open set
=1

n
containing A, Also ?:Uer. So ¥ is compact and fc PP cl.
i=l

(1) Let I be any closed subset of X and let x,& X |E. Since X |F is open, there is
a closed compact neighbourhood 4 of x; with 4 = X\F. By step (1), there is an open
set F such that = is compact and

Ac¥VcVcX\F,
Write B=F\V, Then B is also a closed compact set with 4 N B = 9.

Clearly ¥ with the relative topology, is a compact Hausdorff space and so is normal.

Hence there is a continuous mapping g :+ 7 — [0, 1]
such that g(x) =0 v xed
=] v xe B,
We now define the mapping f: X — [0, 1] by
Ax) = glx) Vaxey
= | vxeXNV .
We now show that / is continuous.

(a) Let ze¥. Choose any € > 0. Since g is continuous, there is an open
neighbourhood U of z in the space 7 such that |g(x) — g(z)| < €, ¥xe U, we can write

U=V ~n G where G is an open set in X. Let W = V ~ G. Then W is an open
neighbourhood of z in X and we have

| Ax) — flz)| = |glx) — g(z)| < €, YxeW (since W = L) and so f is continuous at z.
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(b) Let z e X\ = W (say). Let € > 0 be given. Clearly ¥ is an open neighbourhood
of z in X and we have

[ Ax) - =N-1=0<g, vxeW

So f is continuous at z.

(c) Finally let z& P\V. Then fiz) = g(z) = 1. Let € > 0 be given, Since g is continuous,

there is an open neighbourhood U of z in the space 7 such that

| glx) = g(2)) <€, ¥xell
We can write U= 7 N G, where G is an open set in X. We have G =(G ) u(G\ 7).
Now if xeG ¥, then f{x) = g(x) and so

Ifix) — 2 = |glx) - g(2)] < €.
If xeG\VcX\V, fix) =1 and so
|fx) -2 =1 -1]=0<Ee,
Thus | fix) — fiz)] < €, YxeG. Hence f is continuous at z.

Since x,€ A(which is contained in J7) and F c X\F, we have flx;) = 0 and fx)
= 1, ¥xeF. This proves that the space X is completely regular,

Theorem : 4. A locally compact Hausdorff space is completely regular.

Proof. TFollows from Theorems 2 and 3.

Exercise : Let (X, 1) be a 7, space. Then the following statements are equivalent.

{i) X is locally compact,

(ii) For each xe X and each neighbourhood U of x there is a relatively compact open

sel ¥ such that xe ¥ c Vel

(iii) For each compact set ' and cach open set U with C < U, there is a relatively
compact open set ¥ such that C ¢ Vc Ve U

(iv) T has a basis consisting of relatively compact open sets.
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Solution : (i) = (i) :

As in Theorem 2 wé can show that 3 an open set V¥ such that ¥ is compact (i.c.

V is relatively compact) and xeV — Fc U

(ii) = (iii) : Suppose (ii) holds good. Let C be a compact set and [/ be an apen
set with C © U. Take any xe C. Then xe U and by (ii) there is a relatively compact open
set F, suct that.

xelV,cV,clU,
Now {V, ; xeC} forms an open cover of C. Since C is compact, 3 a finite number.

T "
of open sels Vx.,VxJ,.., Vx" 5. © CUI’;-, . Write V=UVJ‘r . Then ¥ is an open set. Also
i=1 i=l

n
F:UFJ:,- , being finite union of compact sets is also compact. Hence V is a relatively
i=1

compact set such that

Cclefel:

(iif) = (iv) : Suppose (iii) holds good. Let 28 be the family of all relatively compact
open sets. Let G be any open set and x€G. Since {x} is compact, by (lii) 3 a relatively

compact open set ¥ (i.e., Ve 28) such that xeV ¥ <G . Hence @ forms a basis of 1.
(iv) = (i) : Let xeX. Since X is open by (iv) there is a relatively compact open

set V such that xeVc ¥V cX. Clearly ¥ is a compact neighbourhood of x and so X
is locally compact.
Exercise : Let (X, T) be locally compact and let f: (X, 1), — (F. ') be open,

continuous and onto. Then show that ¥ is also locally compact.

Solution : Let ye Y and let ¥ be a v'-open set containing y. Let flx) = y, xe X\ Since
f is continuous at x, we can find an open set U containing x such that AL/) € V. By
local compaciness of (X, t), there is a compact set 4 such that

el A ol

27




Then y=fx) efd) c f4) c AUy C V.
Write fld) = B. Since f 1s continuous and A is compact, so B is also compact, Again
as [ is open so f{4°) is an open set contained in f{4) and so

SA™) € (A = B~
Thus we have yeB* € B < F ; which shows that ¥ is locally compact,
Exercise : Prove that a closed subspace of a locally compact space is locally

compact,

Solution : Let (X, 1) be locally compact and let ¥ € X. To show that (¥, Ty) is so,
choose y €Y and let ¥ be a T neighbourhood of y, Then ¥ = U 1 ¥ for some 1-
neighbourhood U of y. Since X is locally compact, 350 there is a compact sel A4 such
that

yed° c 4 c U
Then yed* N ¥YcAn¥YcUnY=F
Write B = 4 n Y. Choose an open cover ¥ of Ty-open sets covering B, Note that
every We 9 is of the form W= W n ¥, Wert, Then (W : W = Wn Y e 9 U XA
forms an open cover of 4. By compactness of 4, this cover has a finite subcover and
consequently ¥ also has a finite subcover of B, Hence B is 1,-compact. Clearly

y= PR ¥

and this proves the result.

Exercise : The cartesian product HAX-:: (pravided non-empty) is locally compact
e

iff each X, is locally compact ¥ oeA and all X, except for finite number of spaces,

are compact.

Solution : First let X be locally compact. Since each projection map PaivX =X
is a continuous, open surjection, (by previous exercise) X, is locally compact, ¥ usA.

Now let xe X. By local compactness of X, x has a compact neighbourhood U = 1L,
(say). Then U, = X,- Yoee AVF, where F is a finite subset of A, Thus p,, (I/) = X, which

is compact (being continuous image of the compact set ), for all ce A\F, Hence all
spaces X, except for finite number of a's, are compact.
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Conversely, to prove X to be locally compact (under the stated conditions), let
x=(¥%y )aep € X. By hypothesis, there is a finite subset F = {o,, ., @} (say) of A such

that X, is compact, YoeA\F. For aeF (i = 1, 2, .., m), there exists a compact

neighbourhood U, of X“' in Xy, (by local compactness of cach X). Then - B,
e
where V, = U, for o = o, .., & and ¥, = X for & #F is a neighbourhood of x, and

V is compact by Tychonoff product theorem. Hence each point of X has a compact
neighbourhood and so X is locally compact.

2.2 Compactification

Let X be a topological space. A pair (f, ¥) is said to be a compactification of X il
the following conditions hold.

(i) ¥ is a compact space.

(ii) There is a subspace ¥ of ¥ such that ¥, is dense in ¥ and fis a homeomorphism
of X onto Y.

Let (f; ¥} be a compactification of the topological space X. If '\(X) consists of one
point only, (f, ¥) is called a one point compactification of the space X.

Exercise : 1. If X is a compact space, (i}, X) is a compactification of X where i,
is the identity mapping.

Exercise : 2, If X = (0, 1), then (f, ¥) is a compactification of X where V' = [0, I]
and /: (0, 1) — (0, 1) = [0, 1] is the inclusion.

Exercise 3. Take ¥ = [a, b], ¥; = (a, b). Then also (f, ¥) is a compactification of
(0, 1) = X, where f: X — ¥, is defined by filx) = a + (b — a)y, VxeX

Theorem : 1. Let (X, T) be a non-compact topological space and let X* = X U {=o},
where = is an element not in X. Denote by t* the family consisting of the void set §,
the set A*, the members of T and all those subsets [/ of X* such that X*\{J is a closed
compact subset of X. Then ©* is a topology on A™ and (X*, ©*) is a compactification
of X.
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I'roof : We prove the theorem in the following steps.

(Iy We first verify that T* is a topology on X*. Let G,, G, be two members of t#
and let G = G G,. If G = ¢ then clearly Get*. Suppose that G # ¢. If G,, G, et
then Get © ©*. Let G, G, #7. Then X* \ G, and X* \ G, are closed compact subsets
of X. So X* - G = (X* - G)) U (X* — G;) is also a closed compact subset of X and
so Get*. Again let G\eT but G,&t. Then X* |G, = F(say) is a closed compact subset
of X

Since F < X, e €F. 80 e €0, and we may write

G, = ANF = {=o} U (X\F) = {==} U W (say) where Wet. Then G = G\ G, = G,
Nliee} W W] =Gy W et ct® If G, g7 and G, €7 then one can similarly show thal
Get*,

Now let {G, ; ae4} be any nonemply subfamily of 1* (where 4 is an index set)
and let G = W {G, ; aed}. If Get Ya €4, then clearly Ger © t*. Suppose G, 21
for some aeA. Let 4| = {a ; Gg1} and 4, = A\,. Write U, = U{G

i

;@ €A} and U,

Il

G, 5 aed,}. For aed,, we may write G, = {eo} U W, where W 1. Also write ¥,
G, if acA,. Then

a

I

G = U{G, ; acd}
= {eo} U [V W, ; acd]}]
= {==} W W (say).
clearly W= U{WW, ; a €4) €7.

Take ayed,, Then Wﬂa C W. Now we have X*\G = X*\[{s} U W] = X\ which is
closed is X. Also X\W © XWF, = A"G, where X*\ Ga, is compact in X. Hence it follows
that XY*\G is also compact in X (being a closed subset of a compact set). Therefore Get*,
Obviously ¢, Aet® and 7F is a topology on X*,
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(1) Let Wet. Then == ¢ W. S0 we may write W =X ¥ where Wet*. Again if Ge*
but G ¢ 7 then G is of the form G = {==} U W where Wet and so G X = Wet. This
shows that T consists of exactly all those sets of the form X n G where Ge1*, Hence

(X, T) is a subspace of (X*, T%), Also since GNX # ¢ for every open set G containing
eo, 50 X is dense in X%,

(lll) Let G = {G, ; a4} be any open cover of X*. Then = €G, for some asA.
Let 4 = {a ; = gG,} and A; = A\A,, For aed, we may wrile G, = {=}U W_where

W, Also write G, = W, for a4, Take any aye4,. Then X*\G,, = X\W,,, is a compact

subset of X. Clearly {W, ; ac4} is an open cover of X\W,, . So there is a finite number

of sets Wap s Ways oo W, from the family such that

gy

X# Gy = X\ Wooc U <G,

So x* = |JG, and X* is compact.
i=0

(IV) Take ¥ = X* and ¥, = X. Define the mapping f: X — ¥, by fix) = x for xe X,

Then f is a homeomorphism of X onto ¥, Therefore (f, ¥) is a compactification
ol X.

Note : In the above theorem clearly f is the identity mapping i, on X. The
compactification (i, X*) is called the Alexandroff’s one point compactification.

Definition : If (£ ¥) is a compactification of a topological space X where ¥ is T,
then (£, ¥) is called a chumpaétiﬁcatinn of X.

Theorem 2 : Let X be a topological space which is not compact. Then Alexandroff’s

one point compactification (i,, X*) of X is a T;-compactification iff X is a locally compact
T, space.
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Proof : First suppose that (i,, X*) is a T,-compactification. Then X* is a T, space
and so X is also a T)-space,

Let xeX. Then x and eo are two distinct points of the space X*. So there are open
sets Gy, G, in A* such that xe G, = €G, and GG, = ¢. Since == &0y, G,C X and
i5 open in X. Again X*\G, is closed and compact in X. Since G,c AM\G,, so X%\ G, itself

is a compact neighbourhood of x in X. Thus every point of X has a compact
neighbourhood and so X is locally compact,

Next suppose that X" is locally compact and T,. Let x, y be two distinct points of
X*. If x, y € X then Hausdorffness of X implies that there are two disjoint open sets
Gy, G, in X containing x and y respectively. Since open sets of X are also open in X*
so the result follows. Now let xeX and y = ==, Since X is locally compact, there is a
compact neighbourhood U of x in the space X. Since X is a T,-space, U is also closed
in X, There is an open set G| in X with xe G, © U Take G, = X*\U. Then @, is open
in X* and < €0, Also Gy G, = ¢. Hence the space X* is a T,-space.

Definition : Let (X, 7) be a topological space. If there exists a topological space
(¥,7)s.. X" is homeomorphic to a subspace ¥, of ¥, then we say that X can be embedded

in the space ¥,

Let (X, 1) be a topological space and & be a family of functions s.t. each function
fin &Fis a mapping from X to a topological space ¥ r- Denote by ¥ the product of the

spaces Y, i.e, Yzf..—-llr}-’ S

Definition : Defline the mapping e : X — ¥ as follows. For xe X, e(x), = fx), where
e(x), denotes the f th component of e(x), ie. Py (e(x)) = fix), VxeX so that p.oe = f
Py 1’[]‘}—3 I’}heing the f th projection map. e is called the evaluation map. We say that
the family & distinguishes points iff for any two distinct points x, ye X, 3 f' € o7 sit. f{x)
# fiy). We say that the family < distinguishes points from closed sets if for any closed

set A in X and cach point x in X, there is a f& o7 st, flx) & f(4).
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Embedding Lemma

Let (X, T) be a topological space and <# be a family of functions on X such that

each fin < is a continuous mapping of X into a topological space ¥, Then followings
hold.

(a) e : X — Y=j_é:l;r1’f is confinuous.

(b) e is an open mapping onto e(X) if < distinguishes points from closed sets.

(c) e is one-to-one iff &F distinguishes points.

(d) e is a homeomorphism of X onto e(X) if < distinguishes points as also points
from closed sets.

Proof : (a) Lel P_,r’ denote the projection of the product space ¥ to the ' th co-ordinate
space Y. For x€X, (P,0e) (x) = Fe(x)) = e(x), = fx). Since each f is continuous, so
each Peoe is continuous for each fe o Therefore ¢ is continuous,

(b) Suppose that < distinguishes points from closed sets. Let & be any open set
in X and let y€e(G). Then 3xe G such that y = e(X). Since <# distinguishes points from

closed sets, there is a function f in <# such that flx) & f(4) where 4 = X\G. Write
_ Ufz}’f\f{A}. Then U_.r is open in ¥, and Pf'(Uf} is open in the product space T F_}

Therefore W, = Pf'{U r)me(X) is an open set in the subspace e(X) of ¥. We now show
that
}?EH’;, c el).
Since x¢ 4, by our hypothesis f(x)g f(4) and so f(x)e ¥\ f(4)=U,. Since Pfe(x))

= f{x), so y = e(x) Pf"( Up. Hence ye . Next let ze ¥, Then ZEPI“{UJJ and ze e(X).
Clearly z = e() for some ucX. Now e(u) EP;‘ (UJ,; = Py (e(u)) = e(u]f= S z-:il.{Ir =

JLED) EH = & A= uelG = z = elu) €elG). So W, € e(G). Thus e(G) is a

neighbourhood of y in the space e(X). Since ¥ is an arbitary point of e(G), it follows
that ¢(G) is an open set in the space e(X). Hence e : X — e(X) is an open mapping.
(c) Suppose that =# distinguishes points of X. Take any two points x, ¥ (x # ¥) in
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X. Then there is a function f& <& such that fx) # fly), ie., e{xh- # e(y)s. This gives that
e(x) # e(y). Hence ¢ is one-to-one,

Next, suppose that e is one-to-one. Let x and y be two distinct points of X, Then

e(x) # e(y). So there is a funetion fin & suct that e(x), # e(y), ie. fix) # fly). Hence the
family o distinguishes points of X,

(d) If the family <& distinguishes points as well as distinguishes points from closed
sets, then by (a), (b) and (c), e is a bijective mapping from X onto e(X) which is both
open and continuous. Hence e is a homeomorphism from X onto e(X).

Definition : Let X be a topological space. Denote by C*(X) the family of all
continuous mappings of X into the unit closed interval [0, 1] = Q. Now by Tychonoff’s
theorem Q") [the product of the unit interval O taken C*(Y) times] is compact. As
before let e : X — O be the evaluation map defined by e(x), = fix) for xe X. Then
¢ is continuous, Now suppose that X is a Tychonoff space (completely regular T, space),
Then from definition it follows that the family C*(X) distinguishes points of X as well
as points from closed sets. Then by Embedding Lemma, e is a homeomorphism of X

onto the subspace e(X) of O°'™. We write B(X)=e(X). Then B(X) is compact and the

pair (e, B(X)) is a compactification of X which is called the Stone-Cech compactification
of X.

Theorem : 3. (Stone-Cech Theorem)

Let X be a Tychonoff space and f be a continuous mapping of X into a compact
T, space ¥, Then there is a continuous extension of f which carries f(X) into ¥.

Proof : Let e denote the evaluation map of X into O™ and g be the evaluation
map of ¥ into O%"") where O = [0, 1]. If e C*(¥), then aof is a continuous mapping
of X into O and so aof €C*(X), Denote the mapping /* : C*(¥) — C*(X) by fMa) =
aof, for all aeC*(Y). Then for any ge C*(X) — O, gof* is a mapping of C*(}) into
0. Define the mapping f** : €W 5 QC“:Y-' by

S¥*(q) = gof* for all ge Q~*Y,
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Let rJE.C“{Y:I and ge O¢'™. We have
Pot**(q) = P (**(q)) = P (qof*)
= (gof*) (a) = g (*(a)).

But g(f*(a)) is simply the projection of g into the f*(a)-th co-ordinate space of QC*'['V!
and this is a continuous mapping. Hence the mapping f/** is continuous. By embedding
Lemma, e is a homeomorphism of X onto e(X) and g is a homeomorphism of ¥ onto
g(¥) = B(Y), because ¥ is a compact T, space.

B QB . oM S poyy=gy)

] I

X f >Y

Lot xeX and acC*(Y). Write ¢ = e(x) and y = f(x).
Then g O™ and ye¥. We have
[(F*0e) (x)] (@) = [F*(e(x))] (@) = [**(@)] (a)
= (g0r*) (a) = g(/* (a)) = g(avf)
= e(x) (a0f) = (a9/) (x) = a(fix)) = a(y)
= g0), = 20) (@ = [ (@)
This gives that
(f**0e) (x) = g(flx)) eg(¥).
Let gee(X). Then there is a point x in X such that e(x) = ¢. So
J¥*(q) = f*e(x)) = (f**0e) (x) = g(f () sgb).
Or, (g7'0f**) (@) = %) €Voricinnnns (1

Now let ¢ €P(X)\ e(X). Since e(X) is dense .in PB(X), there is a net {g, ; ne D} in
e(X) such that {g, ;. neD} converges to g. Clearly g'of** is continuous. So the net
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{g"'0r**) (g,) ; ne D} converges ta (g~'o/**) (g¢). Since (g-'of**) (g,) € X, for every ne D
and ¥ is a compact T,-space, (g'o/**) (g) €Y. Hence g'of** carries B(X) into Y.

Write h = foe!. Let gee(X). Then g = e(x) for some x€X. We have

h(g) = (foe™!) (g) = fle™! () = fix) = (& '0/**) (g). (by . (1))
Hence g-'of** is the required extension of A.

Definition : Let X be a topological space. Let us denote by % the collection of all
compactifications of X. For (f, ¥) and (g, Z) in ¢ we define (f, ¥) = (g, Z) if there is a
continuous mapping & of ¥ onto Z such that hof = g. Clearly gof! is a homeomorphism
of Iy, onto Z,. The compactifications (£, ¥) and (g, Z) of X are said to be equivalent il
there is a homeomorphism h of ¥ onto Z s.t. hof = g In this case we write (f 1)

= (g 2).

Theorem : 4. Let X be a topological space. Denote by # the collection of all Ty
compactifications of X. Then % is partially ordered by 2.

Proof : Clearly = is reflexive. Let (£ ¥), (g, Z) and (h, W) be three elements of &
and let (f, ¥) = (g, Z) and (g, Z) = (h, ). There are continuous functions f: ¥ = Z (onto)
and k : Z — W (onto) suct that g = jof and h = kog. Then clearly 4 = ko(jof) = (koj)of,
where koj is a constant mapping of ¥ onto W. So (f; ¥) = (k, W). Hence 2 is transitive,

Next let (/, ¥) and (g, Z) € % such that (f, ¥) = (g, Z) and (g, Z) = (f; ¥). There are
continuous mappings j : ¥ — Z (onto) and k : Z — ¥ (onto) such that jof = g and kog

= .
' So f'= kofjof) = (ka)of
and g = (jof) = (jok)og.

Let ye ¥, Since [ is a homeomorphism of X onto ¥, there is a point x in X sucl
that ¥ = fix). We have

¥ = flx) = [(ko f)o f] (x) = (koj) (Ax)) = (koj) (). Again let ye Y, Since ¥, is dense
in ¥, there is a net {y, ; €D} in ¥, converging to y. For each n in D, there is & point
x, in X such that y = fix ). We have
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lim y, = lim fix,) = lim [(ko fof] (x,)

lim (koj) (Ax,)) = lim (koj) () = (koj) (v} (koj is a continuous mapping of ¥
onto inself). Thus (koj) (¥) = » ¥ yeX which shows that koj is the identity mapping
- of Y. Similarly, we can show that jok is the identity mapping of Z. Let u, v (1 # v) be
two elements of ¥. Then

e
1l

(koj) (u) # (koj) (v)
i€, Kj(u)) # k((v)

which implies that j(u) # j(v). So j is one-to-one, similarly, & is one-to-one, Hence
J is a homeomorphism of ¥ onto Z, This gives that (f, ¥) and (g, Z) are equivalent i.c.,
(. ¥) = (g, Z). Hence (¢ =) is partially ordered,

Theorem : 5. Let X be a Tychonoff space which is not compact. Let % denote the
collection of all T,-compactifications of X. Then Alexandroff's one point compactification

A™ is the minimal element and Stone-Cech compactification is the maximal element of

(¢ 2).

Proof : Let (f, T) be any T,-compactification of X. Then ¥ is a compact T,-space
and f is a homeomorphism of X onto a dense subspace ¥, of V.

(I) We first show that (e, B(X)) = (f, ). Let O = [0, 1] and e denote the evaluation
map of X into the space Q%) By Stone-Cech theorem there is a continuous extension
h(say) of the map foe™! such that h carries P(X) into the space Y.

Let ye ¥, If ye ¥, then y = fix), for some x in X. Write g = e(x). Then

M) = (o) (@) = et (@) = fx) = ».

Suppose that ye \Y,. Since ¥, is dense in ¥, there is a net {y

ne D} in ¥, which
converges to y. For each n in D, there is a point x, in X such that y, = flx ), Write g,

e(x,). Then g, € e(X) < P(X), ¥ neD. Since B(X) is compact, the net {g, ; ne D} has
convergent subnel. So we may assume that the net {g, : neD} is convergent. Let ¢

]

lim g,. Since A is continuous, the net {A(g,) : neD} converges to A(g).
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We have

h(g,) = (f oe™) (q,) = Re'(g,) = Ax,) =y,
So y = lim y, = lim h(g,) = h(g).
Hence h maps P(X) onto the space ¥ which proves that (e, B(X)) = (£ 1)
(IT) We now assume X to be locally compact also. Then (i, X*) is a T,-

compactification. Further ¥ is an open subset of the Hausdorff compact space ¥ as it
is homeomorphic with X. We now show that (f, ¥) 2 (i,, X*). Define the mapping h of
Y onto X* = Xi(==} as follows. Let ye ¥, Then y = flx), for some x is .X. Since f is one-
fo-one, x is uniquely determined by y. We define A(y) = x. Also we define A(y) = eo
if ye Y,

Let G be any open set in X*, First suppose that G c X. Then Y(G) = AG), Since
f is a homeomorphism, /r'(G) is open in ¥, and so is open in ¥, Next let = € G. Then

we can write G = W u {=} where W is open in X and X*\G = X\W is a closed compact
subset of X, We have

HFY(XNG) = (XY Vri(G) = Wrl(G),
So F(G) = WIri(X*\G) = Wir'(X\W) = YXW)

Since X\W is compact in X and f continuous, f{LX\W) is compact in ¥, and so is compact
in ¥, Since Yis T, so f(X\W) is closed in ¥, Thus #'(G) is open in ¥ and so A is continuous.
Hence (f, ¥) 2 (i, X*). This completes the proof.

2.3 Wallman Compactification

We will now describe another type of compactification.

Let (X, ) be a T-topological space. Denote by %, the collection of all closed subsets
of X. Let ¥ denote the collection of all ultrafilters of & |
(I) For any GerT, let

G* ={F: Fe Yand 4 C G for some deF} and B = {G* : Ger).

If G, and G, are two members of T, then we can verify that
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il

(@) (G, M Gy)* GI* m GE‘

(b) (G, v G)* = G,* L G,*

The relation (a) gives that G* m G,* € @ whenever G *, G,* € #, Let &#F €Y. Since

Xetand A c X for any 4 € <& 50 &F €X*, Hence ¥ = X*. Thercfore 3 forms a basis
for a topology t* on F.

(1) For any xe X, let <& = {4 : xe 4€ '%}. It is easy to see that each <_is an ultrafilter
in ¥ and so ¢Fe¥. Let

Y, = (< : ¥ X},

(IlI) Now define the mapping f: X —» ¥, by flx) = &% for xeX. Obviously fis an
one-to-one mapping from X onto ¥,

Let x;& X and let § be any neighbourhood of flx,) = F, in the space F,. Since 4
is a base for t*, there is a member G"e 3 with i

e €GN K Ch

So there is a member A in .:zﬁ;n with 4 C G. This gives that x g G. Take any xeG

and let B = {x}. Then Be c#, Since B €G, so <% G* which shows that f{x) €5. Hence
f is continuous.

Write g = f!. Take anyd#e ¥, Then o, = s for some point x;€X. We have

MAxp) = @i;“ = o, and so g(<#) = x;. Let G be any open neighbourhood of x; in (X, 7).

Then G* is an open neighbourhood of <&, in the space ¥ and § = ¥;; m G* is an open
neighbourhood of <& in the space Y. Take any<#%& S. Now o = &%, for some xe X, So
A € G for some A € % which implies that xe G, Since g(<#) = g(<#) = x, we have g(+)
€G for all & €S. Hence g is also continuous. Therefore f is a homeomorphism from
X onto ¥,

(IV) Let &£ Y and let § be any < *-neighbourhood of m in the space V. Since 4
is a base for 1%, FEG*  § for some G* in 28, Take any x€G. Then o7 e G* and € ¥,
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Thus § N ¥, # ¢, which proves that ¥, is dense in Y.

(V) Finally we show that (¥, ©*) is compact. Let & be any ultrafilter in ¥, We define
a subfamily } of ¢ as follows :

P={4:A4e¥and Fc N U?, for some Fe %)
where U, = X\4 and so U *et*.
It is easy to see that ¢z

Let 4, 4, be two members of (. There are members F, and F, in & such that
Fy € NUy and Fy c Y\ U} .
Write ¥ = F, m F,. Then F € & and we have

Fc(rxugl}n(fxu,T,J;:rx(U;I Vi)

= Y\(Uy VUL =¥ \Ujgn 9.

Hence 4, N 4, ef.

Again let A€, Be ¥ and A — B. Then F C n', for some F €% Since 4 c B,
Up © Uy, which implies Up" € U = NU* © NWU,*. So F © NU,". This shows that
Bef. Hence f is a filter on % Now there is an ultrafilter B* in ‘% containing ). Clearly
f*e¥. '

We will show that B is a cluster point of & If not then there is an F & 4/ such that

f*¢ F, where F denotes the t*-closure of F. Then f*e WF. Since 2 is a basis of 7*,
there is a member G* in 98 with

B* c G* c NF.
Write A = X\G. Then Ae ¥ and U, = X\d = G. So U,* = G*, From above we have
U  NF or Fc Y\U,*.

This gives that A€} and so 4 € B*. Since B*eG*, there is a member B in B* with
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B C G = X\4. But then 4 m B = ¢ B* which contradicts that B* is a filter. Hence f*e 7,

for every I' € @7 and so &/ converges to B*. This shows that (¥, T*) is compact. We have
then the following

Theorem : (f, ¥) is a compactification of (X, 7). This compactification (f, I"} of X
is known as Wallman compactification of X and is denoted by w(x).

Exercise : Let X be a Tychonoff space, If X is locally compact then prove that for
every compactification (f, ¥) of X, P\X) is closed.

Solution : Since local compactness remains invariant under a homeomorphism, f.X)
is also locally compact. Let yef{.X). We will show that y is an interior point of fX). Since

JX) is locally compact, 3 an open neighbourhood U of x in f{X) such that [/ is compact
(A denotes the closure in fiX)). Hence there is an open set I in ¥ such that U= F
fIX). Now we have ¥ =(V r f(X)), where 4 denotes the closure of 4 in ¥ [as we know
that if D is dense in a topological space (X, t) then for any open set W, W =(W ~ D)].
Thus I

xeVeVl=(FnfX)clclc f(X)

because [7 is a closed set in fiX) containing U. This proves the assertion,

Group-A
(Short questions)

1. Give an example of a topological space which is locally compact but not
compact.

2. Show that the space of rationals with the induced topology from the usual
topology of reals in not locally compact.

3. Give examples to justify that two compactifications of a given topological space
may not be homeomorphic.

4, Show that any open subspace of i locally compact space is locally compact.
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g =1 N LA

Prove that R* with product topology is not locally compact.
Show that if X is connected then B(Y) is also connected.

Show that product of locally compact spaces may not be locally compact,

For two compactifications (7, ¥) and (g, Z) if (/, ¥) < (g, Z) and (g, Z) < (1, 1),
then show that (f, ¥) and (g, Z) are equivalent.

. Show that the Sorgenfrey line (R, 7)) in not locally compact at any point.

Group-B
(Long questions)

. In order that two compactifications (f, ¥) and (g, Z) of a topological space X

be equivalent prove that it is necessary and sufficient that for evéry pair of closed
subsets 4, B of X,

fADNfBY=b = glD)ngB)=¢ -

Show that if (f,, ¥,) is a compactification of the space .X, for every o €A then

I1(f5:¥:) is a compactification of I1 X, .
| EA wEdh

. Let X be a Tychonoff space. Then prove that every pair of sets which can be

separated by a real valued continuous function have disjoint closures in pX.

. Let X be a Tychonoff space. Prove that X is locally compact iff the remainder

BXY\B(X) is closed.

. Prove that in a locally compact space the intersection of a closed subset with

an open subset in also locally compact.

. With reasons give an example of a topological space which has only one

compactification,

. Let X be completely regular and T, Show that X is connected if and only if

fX is connected,

. Let X be discrete. Show that if U is open in X then {7 is also open in BX. Then

show that BX is totally disconnected.

. Let A4 be any subset of B? (neM) such that 4 and B"\A4 are both dense in B".

Prove that no point of 4 has a compact neighbourhood.
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Unit-IIT O Paracompactness

Introduction

In this chapter we will study a weaker notion of compactness, which is called para-
compactness ; this notion is actually more recent as it was introduced in 1944. The notion
uses the idea of locally finite family which is easier to find. The importance of the idea of
paracompactness also lies in the fact that many results, especially involving separation axioms
on which we will concentrate, which were originally proved using compactness can be found
valid by using the weaker notion of paracompactness. Apart from establishing several basic
results we will show that a stronger notion of normality, called fully normal spaces can be
abtained from paracompactness. We will finally introduce the very important notion of
partition of unity and give an equivalent criteria of paracompactness in respect of partition

of unity,

Definition : A family of subsets {B, : i € A} of a topological space X is said to be locally
finite if each point x of .X has a neighbourhood U7 which intersects at most finite number. of
members of the family i.e., there is a finite subset A, of A suct that U'n B, = ¢ for all i
in AVA|. Thus {B, : i € A} is locally finite iff there is an open cover o of X" such that every

member of ¢ meets at most finite number of members of {8, : i €A},

Remark Every finite family is clearly locally finite. Every subfamily of a locally finite
family is so. If {B, : i €A} is locally finite and {C, : i €A} is such that C; C B, Vi, then
{C, : i €A} is locally finite.

Lemma 1. Let {B, : i€ A} be a locally finite family of subsets in a topological space X,
Then { B, : i€A} is also locally finite and U {B, : icA} = U{B, :ieA}.

Proof : Let x.X. Then there is an open neighbourhood U of x and a finite subset A,
of A such that U n B, = ¢, ¥ ie A\, Tlen U,«-\E.=¢ ¥ ie A\A, and so {E{. :ieﬁ}'

43




is also locally [inite. Now for each i, since B, cu {B :icA}, so B, u_{B;. ieA} and

hence u{ﬂ_;-:ieﬁ} C VB tieA}. Again let xew{B :ieA}. Now there are g

neighbourhood V' of x and a finite subset A, of A such that ¥ n B, =9, ViAW, Let
W be any neighbourhood of x. Then ¥ n W is also a neighbourhood of x and (F
Wyon (U (B, : i €A\A}) = ¢. Since (VW) (U {Bii A #d, 50V W) (Ui{B,

: £4}) # ¢. Thus xeﬁ: = U{E:fE&E}:U{E:iE&}, This proves the result.
F=Y
Definition 1. A topological space (X, 7) is said to be paracompact if every open
cover of X has a locally finite refinement which is also an open cover of X

Exercise 1. A compact space is paracompact,
Exercise 2. A discrete space is paracompact,
Theorem 1. Every closed subset of a paracompact space is paracompact,

Proof : Let X be paracompact and F X be closed. Let { U :icA} be an open
caver of F. Then for each i€, 3 an open set ¥, in X such that Uy =V, ™ F. Now {V,
: €A} W {X\F} is an open cover of X, Since X is paracompact, this open cover has a
locally finite refinement o which is also an open cover of X, Then B={UnF:Uea)
is clearly of locally finite cover of FF. Evidently every member of [ is open in # and
is contained in some UJ. Hence F is paracompact,

Theorem : 2. If every open cover of a topological space X has a closed locally finite
refinement then X is paracompact.

Proof : Let o, be any open cover of X and let 0., be a closed locally finite refinement
of o, covering X. Then for each xeX, there is an open neighbourhood P_of x which
meets at most finite number of members of o,. New {P,: x €X} = o, (say) i5 an open
cover of X. So 3 a closed locally finite refinement o, of o, covering X. For each & in
o, let U, be a member of o, containing B and let ¥, be the union of all those members
of o, which are disjoint from B. By Lemma 1, ¥V, is a closed subset of X, Put B* = Uy
M (X\V,) and denote by o the class of all sets of the form B*. Clearly each B* is open
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in X. Since B C B* VBeo, and o, covers X, so o also covers X. Evidently from
definition, o is a refinement of o..

We shall now prove that o is locally finite. For each x in X, there is a neighbourhood

0, of x which intersects at most a finite number of members of o, say D, .., D, because

m*

o is locally finite. For i = |, 2, .. , m, D, is contained in a member, say, P_ﬁ of o, ('

o, is a refinement of o). For i = 1, 2, .. m, F; meets at most a finite number of members
of o, say, Bi|, .. , Bin, So D, meets, il at all, these #, members alone of o, If B is
a member of o, which is different from all the sets_ﬂu T Ry e .
then B is disjoint from all LDo(i=1,.,m and so B* is also disjoint from all D (i =
L, ., m) ("0 WD, C V). Since () meets at most the sets D, (i = 1, ., m) and 0, covers
X, @, c UiD, 1 i = 1 to m). Consequently @, does nol meet B* Thus x has a
neighbourhood O which meets at most a finite number of numbers of ¢ Hence o,

is an open locally finite refinement of o, covering X and so X is paracompact,

Theorem : 3. If for each open cover of a regular space X there is a locally finite
refinement covering X, then for each open cover of X there is a closed locally finite
refinement covering X,

Proof : Let o be any open cover of X. For each x in X 3 a 4, ec such that xeA .
Since X is regular, 3 an open set B, such that xeB_cC Fx c A, Now p = {B_; xeX}
is an open refinement of o covering JX. By our assumption, 3 a locally finite refinement

v of P covering X. Let §={B:8ev}. By Lemma 1, & is locally finite. Since each B ev

is contained in some B_ and B_IC A_eo, s0 8 is a refinement of o. Thus & is a closed
locally [inite refinement of o covering X

Definition : A family of subsets of a topological space is said to be o-locally Tinite
if it is the union of a countable number of locally finite families.

Theorem : 4. Every open o-locally finite cover of a topological space has a locally
finite refinement,

Proof : Let & be a o-locally finite cover of a topological space X. Now w is the
union of the countable family {c, : neN} of locally finite open classes o, in A" Put B,
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=¢, B,= U (uA) for 1 <n €N and denote by P the class of all subsets of 4 of the
I=m<n Aeoy,

form '\ B; where n €N and V €. P is evidently a refinement of o. Let xe X, Let n
be the least positive integer such that x belong to some W in @, Then xe W\B_ and so
B covers X. Moreover W is an open neighbourhood of x which is disjoint from all
members of [ of the form '\ B, for all p > n. Since for each ¢ €N, @, is locally finite,
for each positive integer m < n, there is a neighbourhood U of x which intersects at
most a finite number of members of o . Consequently the neighbourhood A

m < n} N W of x meets at most a finite number of members of B. This proves the theorem.

Lemma 2. If cvery open cover of a regular space X has an open o-locally finite

refinement covering X then X is paracompact.
Proof : Follows [rom The 2, 3, 4,
Corollary 1. Every regular Lindeloff space is paracompact.

Theorem : 5. Every Hausdorff paracompact space is regular.

Proof : Let X be a T, paracompact space, Let F be a closed subset of X and ae X\F,

For each x in F, there is an open n¢ighbourhood N, of x such that @ & N, . Since X is

paracompact, the open cover {N : x €F} U {X \F} of X has an open locally finite
refinement ¢ covering X. Let B be the class of all those members of o which meet F.

Then P, as a subclass of o, is locally finite. By Lemma 1, { F : BeP} is locally finite.
Also U { B : Bep} is a closed set in X. Put U={B : Bep} and ¥=X\U {F : Bep).
Then U, ¥ are disjoint open subsets of X and F c U. Since f} consists of all those members

of & which meet F, for each B in P there is an x in F such that B — N_. Now B N,
and ag N, . Hence for each B €f, acX\B. Thus ¢ € n [X\E : B €} = V. Hence X
is rcgu.lar.

Exercise : Let X be a paracompact space and let 4, B be two disjoint closed subsets,
If for every x €B there exist open sets U,, ¥, such that 4 ¢ U, x €V, U, n ¥, = ¢ then
there are open sets U, Vsuchthat A c U, B Fand Uny ¥ = ¢.
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Solution : Clearly the family of open sets {X\B} w {V,} ., forms an open covering

of X. Since X is paracompact, this open cover has an open locally finite refinement

(W}

sEA

= {s€A : W, c V, for some xe B}.

Then AmW,=¢ for s€A, and B cUW, . We know that w ¥, =Ul, which is
sl wedy =

closed, Consequently 7 = X\ l_i W, is open. Bvidently 4 c U, B = V= Wy and U
HEL) TE""']

N =
Theorem : 6. Every paracompact Hausdorfl' space is normal.

Definition : Let X, B © X and o be a class of subsets of X, Then v {4 e : »
€A} is called the star of x over o denoted by st(x, o). Wi{dea : 4 m B # ¢} is called
the star of B over o and is denoted by st(B, o). The class of sets {s(x, o) | xeX} is
called the star of o.

Exercise : For B C X and a class of subsets o of X,
(i) st (B, ) =u {st(x, ):xehB}
(ii) B cw {4 : dec} = B C st (B, 0).

Solution : (i) For every x € B clearly st (x, o) C st(B, &) and so U{st(x, o) : xe 8}
= st{fB, o). Conversely, let yest(B, o). Then from definition there is some de o such that
yeA and ANB # ¢, Choose xed n B, Then yeA4 C stx, o) and so st(B, o) = u [st(x,
o) : xeB}. This proves the result.

(ii) Let yeB. Since B € w{d : Aea} so I a 4 €w such that yed,. Then 4 "B #
¢ and this imlies yed, c W {dea: A N B # 41} = st(B ct). This is true for every ye B
and so B < st(B, o). =

Exercise : For 8, C — X and a collection ¢ of subsets of X,
(i) B c C = st(B, o)  st{C, o).

(i) B n st(C, o) = ¢ & C n si(B, o) = ¢.
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Solution : (i) is obvious.

(if) First suppose that B M st (C, &) # ¢. Then 3 y €8 st (C, o). Since si(C,
a) = ufdeo : An C # ¢}, we can find a 4, such that yed, where A,NC # ¢. But
then yeA,MB which implies 4, c st (B, ). Then st (B, o) m € # §. Similarly we can
show that C m st (B, &) # ¢ = B n st(C, o) # ¢. This completes the proof.

Definition : Let o and [ be two classes of subsets, of X, Then o is called a star
refinement of P if the star of o is a refinement of .

Lemma : 3. Let « and [ be covers of X such that o is a star refinement of f. Then
{st(4, o) : dea} is a refinement of the star of f.

Proof : Let 4 ed. Since o is a star refinement of B, for each xe 4, there is a member
B ep such that st(x, o) C Bx. Let x,€4 be fixed. For each xs4, B, C si(x, B), because
X, €A C st(x, o) < B. Hence

st (4, o) = U {st(x, &) : x4} € U{B, : x4} C sl(x,, B).

This completes the proof.

Definition : If for every xe.X there exists ¢ €A such that st(x, @) 8, ef={B}, . Ay

then o is called a pointwise star refinement of fi.

Lemma : 4, If an open covering o = {U/} _, of X has a closed locally finite
refinement then it also has an open pointwise star refinement.

Proof : Let o= {U} _, be an open covering of X. By our assumption o has a closed
locally finite refinement {F} reay’ For every €A, let us denote by s(f), a fixed index in

A such that I, © U, Since {Fi}ien, is locally finite, evidently A, (x) = {feA, : xeF}

is [inite for every xX. Then it follows that the set

rehg(x) iedple)

is an open set, for every xeX. Clearly xe ¥, and so § = {F,} _, in as open cover
of X. Now let us consider a point x,€X and choose an index t, € A (x,). From the above

48



construction it follows that if x;e V, then f,€Ay(x) and ¥V, C U

o) Hence st(x;, B) < U,

.'IU'“}
which proves that [ is a pointwise star refinement of .
Lemma : 5. If a covering & = {4} _, of an arbitrary set is a pointwise star-refinement

of a covering = {B} . iy which is a pointwise star refinement of a covering v ={C,_

wedy *

then « is a star refinement of v.

Proof : Let us take a fixed s;€A and for every xed, choose f(x)eA; such that

A-Ta csi(x,a)c B[{ 1)
Then we have

.-..-f(Ajﬂ, o) = Wist(x, o) XEAJH} S W By From above we can get that
xed
n

whenever we choose ;v:,:,EAs{r then x€8,, for every .xEA;D.

Hence o By, € si(x, B). But then

.nEri'JiﬂI

st (AJ&, o) © st(x, B) © C,
for some wed,. This completes the proof.

Lemma : 6. If every open covering of a topological space X has an open star
refinement then every open cover of X has an open o-locally finite refinement.

We omit the proof as it is too technical.

From the above three Lemmas we can find the following equivalent conditions for
paracompactness using the star operation.
Theorem : 7. For a regular Hausdorff space X the following are equivalent.

(i) X' is paracompact.

(ii) Every open cover of X has an open pointwise star refinement.

(iii) Every open cover of X has an open star refinement.

(iv) Every open cover of X has an open o-locally finite refinement.
-
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Definition : A topological space X is said to be fully normal il every open cover
of X has an open star refinement.

Exercise : A fully normal space X is normal,

Solution : Let X be a fully normal space. Let B and C be two pairwise disjoint closed
subsets of X, Now {X\B, Y\C} is an open cover of X and so it has an open star refinement
. covering X. Let B* = st(B, o) and C* = st(C, o). Clearly 8* and C* are open in X
and B c B*, C c C*. We claim that B*~ C* = . On the contrary if xe B* ~ C* then
3 M, N ec such that xe Mn\N where M B # & # N 1 C. Then si(x, o) intersects both
B and C and as such can’t be contained in either X\B or X\C. This contradicis that o
is an open star refinement of {X\B, X\C}. Hence X is normal.

We will end the discussions with giving the idea of partition of unity without going
into the full details of the proofs,

Definition : A family {f} ., of continuous functions defined on a space X with

values in [0, 1] is called a partition of unity if Z fi(x)=1 for every xe X. This actually

=

means that for a fixed point ye.X, at most countably many functional values £(y) can

be non-zero and clearly the infinite series Z j_;.‘ {y) is convergent with its sum | where
=l

8 s ot = 18 €A L f() # 0}, A partition of unity {/.},<s is said to be locally finite

if' the covering {/;"' ((0, 11)},., is locally finite. In this case for every point ye X, there

is a neighbourhood U and a finite set A; = {5, §,, .. , §} © A such that Jix) =0 for

xe U, se A\, Clearly 3 f, (x)=1 for x € U,, We say that the partition of unity {/},. ,
=1

is subordinate to the covering {4}, il the covering {/.'((0, 11)} wa i5 a refinement of
{Af}l'l.:u‘\-' .

Lemma : 7. For each point finite open cover {L/}._, (a cover is called point finite
it every point belong to only a finite number of members of the cover) of a normal space
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X, there exists an open cover {V} ., such that ECUE'E'SE&.
Proof' is omitted,

Lemma : 8. If an open cover ¥ of a T, topological space X has a partition of unity
{/,},c4 subordinated to it, then % has a locally finite open refinement.

Proof left as an exercise in Group-B.

Theorem : B. For a T, topelogical space X, following are equivalent.

(i) X is paracompact.

(ii) Every open cover of X has a locally finite partition of unity subordinated to it.

(iii) Every open cover of X has a partition of unity subordinated to it.
Proof : First suppose X is paracompact. Let % = {U;} sep; be an open cover of X,

Let %"= {V,} ., be an open and locally finite refinement of % Then by previous Lemmas,

we can get a cover {W.} _, of X such that W, c¥, ¥seA. By Uryshon’s Lemma, there

exists a continuous function g, : X — [0, 1] such that g(x) = 1 for xeW¥,, g(x) = 0

for xe X\V,. Since % is locally finite, the function g= Z,Es is well-defined. It is easy

A

to verify that defining f, = g /g VseA, the family {f},_, is a locally finite partition of
unity subordinated to % . This proves (ii).

The implication (ii) = (iii) is obvious, Let (iii) hold. In view of preceding Lemma
we only need lo prove that X is T,. We will show that X' is Tychonoff, Let xeX, F-a
closed set such that xg £, Now %" = {X\F, X\{x}} is an open cover of X and so it has

a partition of unity {f,},., subordinated to it. So 3 s,€A such that fy,(x)=a>0 and
f;;l ((0, 17) @& X\x} i, it is contained in X\F. So f,(F)=0, Then f: X — [0, 1] where
Ax) = min [é fsﬂ[x},l} is a continuous function with f{x) = 1, fiF) = 0.
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Group-A
(Short questions)

. Giye an example of an open cover which is point finite but not locally finite.
Let " = {(=n, m)}},.y Is ¥ locally finite? Answer with reasons.
Give an example of a paracompact space that is not compact.

Prove that a discrete topological space is paracompact.

Show that every locally finite family of non-empty subsets of a countably
compact space is fnite.

Prove that a T, space is normal if each finite open cover has an open star
refinement,

Give an example of a paracompact space which is not Lindeloff.

Give an example of a paracompact space which is not countably compact.

Group-B
(Long questions)

Show that an F_-subset of a paracompact space is paracompact,

Prove that the cartesian product X * ¥ of a paracompact space X and a compact
space Y is paracompact.

Prove that a paracompact countably compact space is compact.

Prove that a Lindeloff space is paracompact.

If an open cover v of a 1, topological space X has a partition of unity {f},_,
subordinated to it then show that v has a locally finite open refinement,

Let X be a T,space. I 3 a countable open cover {U,} of X such that

0,cU,, ¥n and U, is compact ¥n then prove that X is paracompact.
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10.

A topological space X is called (a) metacompact if every open cover of X has
an open point finite refinement, (b) countably paracompact if every countable
open cover of X has an open, locally finite refinement.

Prove that a paracompact space is metacompact as well as countably
paracompact.

Prove that a countable paracompacl space is countably metacompact |a space

X is countabley metacompact if every countable open cover of X has an open,
point finite refinement]

Prove that any closed subspace of a countably paracompact (resp. metacompact,
countably metacompact) space X is respectively so.

Let 7, be the lower limit topology on [R. Assuming that (i, 1) is Lindeloff, prove
that (R, t;) is a paracompact space.
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Unit=IV 0 Metrization

Introduction

After coming across the two structures, namely, Iﬁelric spaces and topological spaces
it is evident that a metric space is a much stronger structure than a topological space with
many more additional properties arising due to the presence of the distance function. We
have already seen for example that while four types of compactness are different in a
topological space (in general with no additional assumption), they become equivalent in a
metric topology. So the natural question is that whether it is possible to get a given lopology

on a set X as the topology induced by some metric on that set. Metrization deals with this

problem. Here we will see that there are metrizable topologies as also topologics which are

not metrizable. Uryshon’s metrization theorem is recalled here. Nagata-Smirnov theorem;
though quite long and tricky with a very deep proof, is the milestone of metrization problems
as it gives necessary and sufficient conditions for a space to be metrizable. Further, in the
last section we include two very important theorems, namely, Arzela-Ascoli’s theorem and

Stone Weirstrass theorem.

3.1 Metrization of topological spaces

Definition : A topological space X is said to be metrizable if there exists a metric d on

the set X that induces the given topology of X,

Since a metric space is inherently Hausdorff, normal, and it satisfies first axiom of
countability, say the least, metrizability is a highly desirable property for a topological space.

Before we prove our main results, we recall the following,

‘Definition : Let (X, d) be a metric space. A subset 4 of X is called bounded if there
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is a number M such that dix, ¥) < M ¥x, y €4. If A is bounded, the diameter of 4 is
defined to be the number diam 4 = lub {d(a,, @;) : a;, a, €4}.

Boundedness is not a topological property and it only depends on the particular
metric 4.

Theorem A, Let (X, d) be a metric space, Define d : X x X — R by the equation
d(x, ¥) = min{d(x, ), 1}. Then d is a bounded metric that induces the topology of

(X, o), irrespective of whether d is bounded or unbounded. & is called the standard
bounded metric on X.

Lemma A, Let d and & are two metrics on the set X and v and 1" be their induced
topologies. Then t is finer than t ifl for each x in X and each € > 0, there is a § >
0 st

B fx, §) € By(x, €)
Exercise : For any ;(+) ve integer m, R" with the product topology is metrizable.
Solution : We shall prove that the cuclidean metric  on R" defined by
dx, y) = [(x = ) + oo + (&, = 3, 1°
and the square metric defined by
plx, ) = Il‘lﬂ.x{h:i =yl E=L 25, n)
for any x = (x;, ., x,) and ¥y = (3}, ... )
induce the product topology on R
First note that for x = (x, .., x.), ¥ = (¥, .. »,) ER", wWe have
plx, ¥) < dix, ) < nplx, »)
which implies that for xe R", and any > 0,
Bfx, €) C B(x, €)
B,(x, e/\n) € Bfx, ).
Hence the two metric topologies induced by 4 and p are same.

Now we show that the product topology is the same as that induced by the metric
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p. Let B = (g, b)) * .. ¥ (a,, b,) be a basis element of the product topology and let x
= (*; - . x,) €B. For each {, 3 an €, > 0 s.L.

(x,—e,x+e)c(ab)

Choose € = min {€,, .. , €,}. Then Bp(x, €) < B. Hence the p-topology is finer
than the product topology. That the product topology is also finer that the p-topology
follows from the fact that for any x = (x,, .,x) €R" and € > 0,

Ep (x,€)=(x,-€,x, T €)% . x(x,- €, x, + &) is itself a member of the product
topology. This completes the proof.

Definition : Given an index set J and given two points x = (x,),., and y = ().,
of R/, the uniform metric on R’ is defined by

p(x ¥) = lub{d(x, yNoeJ}

where o is the standard bounded metric on R. The topology induced by the metric
P islcalled the uniform topology.

Lemma : The uniform topology on R is finer than the product topology.

Proof left as an Exercise.

Theorem : The countable product of R, R with the product topology is metrizable.

Proof : If x = (x.),.y and ¥ = (1), are two points of R®, define

D, ) = mb{i‘_"#"—”}

I

where 4 is the standard bounded metric on R. Evidently D(x, ¥) 2 0 and = 0 iff

x = y. Also D{x, ) = D{y, x). To prove the triangle inequality, we note that for x, y, =z
€R®

d(x;,2) - d(%;,5;) . d0i1,%)
i i |

< Dlx, y)+ D0, 2z) ViEN
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d(x;, : :
and so D(x, z)} = 1ub{@} < D(x, y) + D(y, 2). Thus D is a metric on R*, We

shall now show that D induces the prudunt topology on R“.

First let & be open in the metric topology and let x& U/, 3 an € > 0 such that B (x,
e) © U. Choose a (+) ve integer M s.t. I/M < €. Lel

V=(x, —€,x,+€) % . % (x,—€,x,+€)*x RxRx . Then Vis open in the"
product topology. Note that for any y = () €RY,

E{-";J} 1 ’
——1_-—‘ EE (i = M)

Hence D{x, y) = max {dlxil’h}. ..,d[x*;}y M },-a;?}, Clearly if ye ¥V then D(x, y) <

e and so V C By(x, €) c U.
Conversely let U= 11,{;, be a basis element of the product topology, where U, is
e

open in R for i = o, .. , o, and U, = R for all other indices i. Let x& U. Choose an interval
(x,~€, x,+e)c U fori=a, ., oa. Wecan choose each €, < 1. Now take

€ =min {€\iii=0y.,d}
If ye B, (x, €), then (i)
d
—-—{"'j’y‘] < D(x, y) < €.
Clearly if i = o, .., @, then €< €\ i, 50 that d(x,,y;) <& <1 which in turn implies
|x, = | < €, Therefore yelll, and so
xEB(x, €) < U.
This completes the proof of the fact that D induces the product topology on R®.

Lemma : Let X be a toplogical space. Let 4 € X. If there is a sequence of points

of A converging to x then xe A. The converse holds if X is metrizable,
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This result is sometimes called the sequence Lemma, We shall use this result to
conclude the following.

Exercise : An uncountable product of R with itself endowed with the product
topology is not metrizable.

Proof : Let ./ be an uncountable index set. We show that R/ does not satisfy the
sequence Lemma.

Let A be the subset of R/ consisting of all points (x,) such that ¥, = 0 for finitely
many values of o and x, = | for all other values of . Let 0 be the point of B/ each
of whose coordinates is 0.

Let I11], be a basis open set in R/ containing 0. Then U, # R for only finitely many
values of o, say for o = Oy oo O Let (x,) be the point defined by Yy =0 for e =qa,,
«« s O, and x, = 1 for all other values of o. Then clearly x = (x,) €4 N TIL . This shows

that 0 € 4.

But there is no sequence of points of A4 converging 0. For let {a,} be a sequence
of points of 4. Each point a, is a point of the product space having only finitely many
coordinates equal to 0. For ne N, let J, denote the subset of ./ consisling of those indices

o for which the ath coordinate of a, is zero. Then UNJ,, 1S a countable set. Since J
=

is uncountable, therc is at least one index, say, B s.t. PeAC,. This means that Pth
coordinate of each 4, is equal to 1.

Now let Uy = (=1, 1) and U=II3'(Uy). Then U is an open nbd of 0 in &' but a,
g U for any neN. Thus the sequence {a,} cannot converge to 0.

The above example confirms that not every topological space is metrizable. We now
give a few necessary and sufficient conditions for metrizabilily. First we recall the
following well known theorem which provides some sufficient conditions for a
topological space to be metrizable, for the proof of which we refer to your earlier course
on set-topology.

Uryshon Metrization Theorem

Every regular T, and 2nd countable space X is metrizable.
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Exercise : Let X be a regular space with a basis 28 that is o-locally finite. Then

X is normal.
Solution' : Step 1.

Since 24 is o-locally finite, we can write 98 = w 28 where each ?33“ is I-::r:;:ﬂl}r finite,
n

Let W be any open set in X, Let C' be the collection of those basis elements B such

that Be B, and B W ., Then C,

n*

being a subcollection of 28, is locally finite. Define

U,= U B
Bell,

Then U, is open and U, = v B (v C, is locally finite),

BeC, "
consequently i, cwl, W .

We now show that = UU, = wul,. Let xe W. By the regularity of X, 3 a Be #
such that xe B ¢ B W. Now Be 28 for some n. Then BeC, by definition and so xe u,-

Step 2. Now let C' and D be two disjoint closed sets in X, By step 1 we can construct
two countable collections of open sets {U/} and {V} such that

wll, =ul, =X\ D

R

¥, =uUF, =X\ C

I

For each neN, define

Vi and ¥, =V, "ujl:«;U,.

A

U, = U\

oo -]
and let U'=w U and V'= U]
n=l =l

Then U =2 C, D — V and UF, V' are open sets with L m V' = @,

Magata Smirnov Metrization Theorem.

A topological space X is metrizable iff it is regular T, and has a o-locally finite basis.

Proofl : (sufficiency)
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Let X be a regular T space with a o-locally finite basis 23
Step 1. Let W be open in X. We have already shown that ¥ is a countable union

of closed sets {4,} of X, Using normality of X, for each n, choose a continuous function
Ju i X = [0, 1] such that £(4,) = {1} and LX) = {0}. Let
Sx) = Ef (x)i2",
Since the series converges uniformly, so the limit Functi_on [ is continuous, Clearly
fx) > 0 VxeW and XW) = {0}.

Step 2. We can write 23 = U 98, where each collection 98, is locally finite. For each
n

neN and Be 3B, choose a continuous function
Jou i X = [0, Un]

such that f, 5 (x) > 0 for xe B and Jon (X\ B) = {0}. Now given any point x,€X and
open set U containing x,, 3 a basis element B such that x,€ 8 cU. Then Be 93, for some
n and hence 1, (%) > 0 and f, X \ U) = {0}. In other words the collection of functions
{/nu} separates points from closed sets. Since X is T\, so it also separates points.

Let J be the subset of N * 28 consisting of all pairs (n, B) such that Be 28 . Define
F: X [0, 1)

by the equation
Fx) = {";.-,s{x))m,a}er

By Imbedding theorem F is an imbedding of X into [0, 1]} with the praduct
topology.

Step 3. It should be noted that [0, 1]/ with the product topology is not always
metrizable (if J is uncountable). So instead of taking the product topology, we take the
uniform topology induced by the uniform metric § on [0, 1}V

Since the uniform topology is finer than the product topology, so F is still an open

map. Evidently 7 : X — F(X) is bijective. We have only to show that F is continuous.
Let x;6 X and € > 0 be given.

First let ne N be fixed. Since 2B, is locally finite, 3 a neighbourhood U, of x; which
meets only a finite number of members of 28, say, B,, .. , B;. Then
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Sog (U) = {0}, VBeZB\B, .., B}
Again by continuity of f;,lgl,, 3 a neighbourhood V7, of x; such that

yeV, = |fup () = Top(xp) | <€/ fori=1to k
Let ¥, =V n .. 0¥, n U, Then F, is an open neighbourhood of x, and for any

x, eV ,any i =1 to k.

PAPEORTAMC) R~

as ¥, is a neighbourhood of x; on which all but finite functions, £, , vanishes

identically and the remaining functions f, ; vary atmost by 7

Now choose Me N such that 1/M < €/2, For each of the (+)ve integers 1, 2 ., M,
choose open neighbourhoods V..., V), of x, having the above property. Let

=¥ oV OV e 03
Let xeW. If n = M, then

Vot = faGo)l < 5
= on W,

b

because each f , either vanishes identically or varies by at most
If n > M, then
1 _e
Vs @) = Jyp Gl < <5

] . Therefore

[

because f , maps X into [l],

PF(x), F(xg) < g <e
Thus we have an open neighbourhood W of x, such that

xeW = p(#(x), F(xp)) < €.
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This proves that the function T is continuous. This completes the proof of the
sufficiency part.

Proof (necessily)

Step 1. Let X be a metrizable space. First we prove that any open cover ¥ of X
has a o-locally finite refinement 27 covering X.

Let d be a metric on X that induces the topology of X. Since the collection ¥ is
a poset (w.r.t inclusion) it can be well-ordered by well ordering theorem. Let ‘< be the
well ordering in %% Let neN be fixed. For Us % define

S, (L ={x - B[x, %J e U}

Then we define

S(Y=8,N\ ¥
F=tf, Ved

We shall show that {§, (U) : U € %} consists of pairwise disjoint sets. For this let
V, We %, V# W. Withoul any loss of generality we may assume that ¥'< . Now xe.§' AN
= x€5,(V). Again ye & (W) implies by definition, y € ¥ (" ¥ < W), Clearly xe& (V), ye V

= d(x, ) = ~. Thus S,(1) A §, (F) = ¢ and

1
o

x&8 (V) and ye§ (V) = dix, y) =

MNow let us define
E(U) = O{B(x, 1/3n) : xES’n(U]}.

Evidently E (L)) is open for each Ue % For ¥, We 9 V + W, we assert that E (1)
E (W) = ¢. For if not, then 3 a ze £ (V) N E(W) = Ixe§' (V) and ye S (W) such that

1 1
zeBlx,—| and z€ B} v, — | = dlx, y) < dx, z}+d{z,y}~il{l,amntmdictiﬂn.*
In In In n

Further it is easy to show that E(U) © U, YU e (* Actually it is casy to sce that
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xEE(V), YEBW) = dix, 3) 2 5=
Now let us define
@ ={E () : Ue%¥)} for neN.

Evidently T2 is a rcfinement of % Also for each xeX, B(x, ﬁjis an open

neighbourhood of x which can intersect at most one member of @, Thus & is locally
finite.

Finally let @@= UN &, Then @ is a o-locally finite refinement of % We just have
He

to show that %7 covers X.

Let xe X. Choose Ue 1o be the first element that contains x (w.r.t. the well-ordering),

Since U/ is open, choose ne N such that H(x. %] < U. Then xS (I)). Since there is no

Ve Fwith xe ¥, ¥ < U. So clearly xe8, (L)) E (L), This completes the proof of our
assertion,

Step 2. As X is metrizable, it is evidently regular and T\. We have to show that X
has a o-locally finite basis. For this we nate that for any me N,
b

(B, m

):ixeX} =98 (say)

is an open cover of X. By step 1, §_ has a o-locally finite refinement @, covering X
Note that every member of ©7 has diameter at most 2/m. Let & = ity @ .. Evidently
me

B is also G—Ioc:i!fy finite, Further given any xeX and €>0, choose meN so that Um
< €2, As @, covers X, we can choose De@ such that xe D, But as diam (D) < 2/m,

so D C B(x, €). Hence @ is a basis of X as _“ "m Is already a basis of X.

Theorem : (stone) Every metrizable space is paracompact.

The results follows from Lemma 2(paracompactness chapter) and the above
Theorem.

63



Exercise : Let (X, o) be a metric space. Let X x X be endowed with the corresponding
product topology. Then d : X x X — R given by (x, ) — d(x, ¥) is a continuous
function.

Solution : Let € > 0 be given. Consider the open interval (d(x, y) — €, dl(x, y) +

€). Choose the basic open set H(x, g]x B[ ¥ %] containing (x, y) in the product
topology in X*X. Take (x,, y,) € B(x, %JXB[J‘: %J . Then d(x, x,) {gand diy, y,) < %
MNote that
cl‘{.r, J“I} s d{xs ‘xl} + d{xh y]} + d{yii .]"r]

ie, dix, y) — d(x,, y;) = d(x, x;) + diy, .]-"|}

i-E-, | d(xr J"') T d{xli yt}l = d{xs '-T|] * d':}'- .]"'t] =N

ie., dix, .}"1) € (dx, y) — €, d(x, y) + €).

This shows that d is continuous.

Exercise : Show that in a compact metrizable space X, every metric for X is a B-
metric (bounded metric),

Solution : In order to prove the result we show that there exist points @, b €.X such
that d(a, &) = diam (X) where d is the metric on X corresponding to the given topology.
Let X* =X x X with the product topology and let /: X* — R be defined as before S,

X,)) = d(x;, x;). We have already shown that f is a continuous mapping to R. Since X

is compact, X' x X'= A" is also compact. Then fX*) being continuous image of a compact
set is also a compact subset of R. Consequently fX*) is closed and bounded in R. Let
C = lub fX*). Then CefX*) and there exists peX* such that f{p) = C, Let p = (a, b).
Obviously d(a, b) = diam (X) and the assertion follows immediately,

We will now show that the cartesian product of countably many metrizable spaces

15 also metrizable.
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Theorem : Let {(X, d )}, be a countable family of metrizable spaces. Let diam (X )

< M for all large n and diam {X"} —+ 0 as n = ==, Let us define e(x, y) = Sup{a’n[x”,yn}} ,
"

Then T, (the topology corresponding to ) is the product topology of TI(X,,td,).

Proof : Let for meN, diam (X)) < M Vn 2 n, Clearly e is well-defined. We only
show the triangle inequality fo prove that e is a metric. For x =(x,),, ¥ = ()., 2 = (2,),
ellXn,

e(x, z) = supd,(x, z,) < sup {d(x,»,) +d 0. 2)
n H

1A

SU.FI dn{xn! ylr} + Supdﬂ[yﬂl Z"]
L Lk

e(x, y) + ely, z).
To show that the product topology is given by the melric e, let x = (x,),e I1 X,
and

x = (x,), €8x, €) * ... x S(x,, €, * TIIX,,=U(3ay}_
H+
Choose € = min {€, €,, .., €,}. Then € > 0 and yeB(x, €) = ¢(x, y) < € =

sup Idlr (xlf ?yl‘i} e
n

=dix,y) <€ forl =izn
Hence y € U and so B(x, €)  U. Thus one side is proved.

To prove the converse take a ball B (x, €). Since diam (X,) — 0, 3 n e N with diam
(X) <€/2 ¥ =n, Let

= X o X B (/2% T1 X,
U= B(x,, €/2) ChagoShNe T X,

Take y = (3,), €U. Clearly d{x, y) < €/2 V1<i<n,;.

Obviously then y elU = e(x, y) = €/2 = yeB,(x, €).
This completes the proof.
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o
Theorem : Let {X : neN} be a family of metrizable spaces. Then Hl X, with produet
=

topology T is metrizable.

Proof : Let d, be the metric for X,. We know that e, for each X, where ¢ (x, y) =

min {%, d,(x, y}} for (x, y) €X = X induces the same topology as d . Obviously diam

(X,) = 0 as m — == and of course it is bounded uniformly. If e(x, y) = supe,(x,.,)

Al

then T, = T and the result is proved.

Exercise : Let (X, d)) and (X;, d;) be two metric spaces, K C X and f: K — X,
be uniformly continuous. Then show that the oscillation w(p) of [ is zero al every pe X -

Solution : For each peK, w(p) = 0 follows from continuity of f at p. If PEX\K
then we have ;

0 S wp) = diam (AX\K) n K) =0

as X,\K is an open neighbourhood of p.

Finally let pe K\K. Let € > 0 be given, By the uniform continuity of £ 3 g 8§ >

0 such that
di(r, q) = & = d(fir), Ag)) < /2.

Choose r, g B(p, %] MK, Then d(g, r) = d/(p, q) + di(p. 1) < -g- I-g— =08 = dy(lg),

Sy <= /2, Henee
diam (AB(p, &2) n K)) £ €/2 < &,

Thus 0 = w(p) = diam (fB(p, 8/2) NK)) < €. Since this is true for any € > 0, w(p)
= ﬂ.-
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3.2 Two important theorems

We first consider compaciness in Cla, &] the space of all real continuous functions
on |a, b] endowed with sup metric p. Cla, 5] iltsell is not compact as it is not bounded,

Definition : Let M be a class of real functions defined on [a, 5]. M is said to be
uniformly bounded if 3 a & > 0 such that [{f)| = k& Viela, b], VJ/EM M is said to
be equi-continuous if for every € > 0, 3 a § > 0 such that [f{r)) — firy)| <€ if |¢, - |
<& YEM

We now .prove the following characterization.

Arzela-Ascoli’s Thorem

A set M C Cla, b] is relatively compact iff it is uniformly bounded and equi-
continuous,

Proof : Suppose that M is relatively compact in Cla, b]. Then M is bounded. This
is equivalent to saying that for &,(/) €Cla, b], there is @ k£ = 0 such that

plx, b)) = Sup.g; () — by(n)| = K "':-".xEM

asis
S0 Yaxe M,

sLp Ix{i’}|£ sup [x{:}—h.{-‘}|+ sup Ibli:.‘}|£k +k' (say).
azish asfzh asr=h

This shows that M is unilormly bounded,

To prove equi-continuity, choose € > 0 and construct a finite ;- net,

A= {x(5), 2(8), ., (N} for M (v M is totally bounded). The functions x(f) are

continuous and so uniformly continuous on [a, 8] Vi =1, 2..,n So 3 §, = 0 such that
k1) = ()l < 5 when 6= ] < 8, 1, t,e[a, b] for i =1,2, ., k. Choose & = min {3,

w8} Then for i = 1,2, .., k [eft,) — x(t)| < % when |t — 1) <8, 1, t, €[a, b]. Let

g

x(1) e M. There exists a xr.{.r)E_A such that p(x, x) < S0
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Then if |t,— 4| < &, 1, L,E]a, b],

lx(r)) — x(5)| = | x(t) — x| + lty) = x(6)] + |x(8) — 2(8,)]

< plx, x) + % + p(x, x) < &

This is evidently true for any x(f) e M and so M is equi-continuous. Conversely
suppose that M < Clg, b] is uniformly bounded and equi-continuous. To show that M
is relatively compact il is sufficient to prove that it is totally bounded. Suppose K is a

{+)ve integer such that x(f)] = K VxeM and refa, b]. Let € = 0 be given. Since M is

equicontinuous, choose & = 0 such that [x(s,) — x(,)] < % W xe M when |, —1,] < 5. Since

[a, b] in compact, it has a &-net ¢, ..., £ . Choose a (+)ve integer m such that %qi’

and divide [-K, K] into 2Zkm equal parts by the points
Vo=—-K=<y <y, <..<), =K where K = 2Km.
Consider those n-tuples f_‘r";l:-yaip--:.‘.l‘p”} of the numbers ¥, i = 0, ..., k such that some
X €M has the property that
g .
|x(rj}_}'rj“‘:E,J = LaBesn

and choose one such xeM for each such m-tuple.
We shall show that the resulting finite subset E of M in an e-net for M. Let xe M;

choose ¥j,¥j sV, so that

x(fj}—}'ﬂ{%,j =1, 2 ... n and so there is a corresponding

ecE, Let te[a, b] and choose j so that |¢ — #| < &. Then [x(r) — e(r)] < |x(r) — x(z)] + |x(z)
-yl + b, — )+ lett) - )] <ce

Hence p(x, €) = sup |x(r)—e(r)] <s
agih

Note : The above theorem can be generalized for any compact metric spai © X in
place of [a, B].
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We next refer to the Weierstrass approximation theorem and its generalization to
a compacl space by stone ; recall that Weierstrass approximation theorem states that P[a,
h]. the space of all polynomials on [a, b] is dense in Cla, b].

Let X be a compact metric space and let C{X) be the space of conlinuous real
functions on X with the usual metric

p(f.8)= 3“E|f (x)—g(x)] .

We define algebraic operations in C(X) as follows : If £ g eC(X) and a is real, then,
for xeX.

(+ g)x) = fx) + g(x)
(&)(x) = fx) glx)
(af)(x) = aflx)

A set A € C(X) is called an algebra if £, geA and a real imply [ + g, fg, afed. If

A is an algebra then it is easy to show that 4 is also an algebra.

Stone-Weiersirass Theorem

Let A be a closed algebra in C(X), X a compact metric space. Assume that 1.4 and
A separates points (i.e. if x, yeX, x # y, 3 fe4 for which f{x) # f{y)). Then 4 = C(X).

Proof : We first show that fed = |f| €4, First suppose that sup{|{x)| : »X} = 1.

Let € > 0 and let p(r) = a, + a;f + ... + a " be a polynomial such that ||[()] — p(r)] < &
e, 1].

Then p(f) = a, + a,f + ... + a, f"ed(*: A is an algebra) and ||f{x)] — p(fix))| <& VxeX.

This shows that |f.| is a limit of 4 and so |f| €4 as 4 is closed. For any fE4 we
can choose a constant a(# 0) such that |afix)] = 1 ¥ xeX. Then as above we can show
that |aff €4 and so [|f| €4.

We next note that if £, geA then min (f; g) and max(f, g) are in 4, [t follows readily
from the facts that

69



max(f, ) = 3/ + &) + 31f - g

minmg}=%(,f+.§)" %lf—gl

and | — gl €4 if £, g4 and A is an algebra,

Next let fEC(X). Let x, ye X, x # y. Let g be the function which takes constant value
Afx) at all points. Then ge 4. Since A separates points, 3 he 4 such that A(x) # A(y). Without
any loss of generality assume that A(x) = 0. There is a constant @ such that the function
i y given by fz}, = g + ah. satisfies _,r‘;y(x} = fix) ﬂnd_;‘;g,(y} = fly) and clearly fo €4, Let'e
> 0. Since (£, =N 0} =) - Ay) =0 <&

From the continuity of Jip —f we can find an open ball s, such that ye s, and f (z)
<fzyt+e V:z £S5,

Since X is compact the open cover {S}, : ¥ €X} has a finile subcover, say, Sy, Sy,

s Sy Let f = min{f, ... £ ). Then JEA, f(x) = fx) and for every zeX, [(z) < fiz)
o] -

Again using the same argument for each ¥ X, choose an open ball 1 such that /()

>fRzy—¢ Nzl

Since X is compact, a finite number of these balls T, ...7. covers X Let F =

xpaay

max [1'11 o } :
Then F €4 and VzeX, [{z) — F(z)| < & This proves the theorem.
Group-A
(Short questions)

1. Is the discrete topology defined on a non-empty set X metrizable? Il so explain
with reasons.

2, Is the real number space endowed with the cofinite topology metrizable? Answer-
with reasons.
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Show that a metrizable space is normal.

. In a metric space (X, d) prove that xe A iff d(x, 4) = 0 where xeX, Ac X.

Let (X, o) be a metric space and 4 c X. If p is a limit poinl of A then show

that A contains an infinite sequence of distinct points converging to p.

. Let X = N w {b} where N is the set of natural numbers and b ¢ N. Define
dix, y) =1 if x, yeM, x # y

d(b, x) = d(x, b) = 1+ if xeN

dix, W»=0ifx=y
Show that & is a metric on X. Find dist (N, {5}).
Let /: (X, d) — (¥, e) be uniformly continuous.
It A, B © X be such that d(4, B) = 0, show that e(f{4), (B)) =0.

Is the real number space endowed with lower limit topology metrizable. Answer
with reasons,

Group-B
(Long questions)

Sy . | : :
Prove that metrization is invariant under homeomorphism.

Show that the derived set of a countably compact set in a metric space is
countably compact.
. For a pseudo-metric space (X, d) if ¥={{¥}:xe X}, define e({5).{7) = dix. »).

First show that {¥}={y:d(x,)=0}. Then prove that ¢ is a metric on ¥,

Let K be a subset of a metric space (X, d) and let r > 0. Define §, (K) = {xe¥
 d(x, y} < r for at least one point ye K}, Prove that §(K) is open.
Let {x }, and {p } be Cauchy sequences in a metric space (X, ). Define a relation

i L]

~" as follows : {x } ~ (y}, iff. limd(x,,»,)=0. Then *~* is an equivalence
a—x
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relation and let X™* be the collection of equivalence classes. For x*, y*e X*, define

d*(x*, y*) = m d(x,,y,) where {x} €x*, {y} €y*. Prove that the limit exists

and the limit does not depend on the members closen from the equivalence

classes,

. Prove that (X*, d*) (described in (5) above) is a metric space.

. (a) If a separable space is also metrizable then prove that the space has a countable

basis.

(b) Show that any finite subspace of a metrizable space is always discrete.

. Prove that a topological space (X, ) is metrizable iff there is a homeomorphism

of X onto a subspace of some metric space.
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Unit-V O Uniform spaces and proximity spaces

Introduction

We are already familiar with the notions of topological spaces and metric spaces. Due
to the presence of a distance function, the topology induced by a metric is much stronger
and also we can define notions like Cauchy condition, completeness, uniform continuity in
metric spaée.s which cannot be defined in general topological spaces. The theory of uniformity
was developed to bridge this gap and it is a tool which can be seen as a structure which
is stronger than a topological space but weaker than a metric space. The theory of uniform
spaces is somewhat analogas to the theory of metric spaces but can be applied to a large
number of spaces; in particularl to those spaces, not necessarily satistying the axiom of
countability (i.e., which cannot be metrizable). We will see that every uniformity induces
" atopology on a set, whereas every mefric or more generally, every family of pseudo-metrics
induces a uniformity on a set. We will study the conditions under which a given topology
can be induced by a uniformity (i.e., when the topology is uniformizable) and when a given
uniformity can be induced by a metric (i.e., when the uniform space is metrizable), We will
also study many more properties of these spaces. Finally we will study another related

structure, called proximity structure.

5.1. Basic definitions and properties

Let X be a nonempty set. A nonempty subsat If of X = X is called a relation on X. If
U is a relation on X, its inverse relation U is defined by L' = {{x, y) : (», x) € U}. Clearly
(LF'y!l = U. If U = U, the relation U is said to be symmetric. If Uand ¥ are two rciﬁtiun
on X, then their composition is defined by,

UoV = {(x, ¥) : (¥, 2) € V¥ and (z, y) €U for some z in X}. It is easy to verify that
for any three relations U, ¥, W on X, (UoVju W = Uo (VoW) and (Uul"}"' = ploU!, We
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write A = {x, x) : x € X}. For any relation Don X, Ao U= Uo A = U, 8o A is the
identity relation on X.

Let A be any nonempty subset of X, U any relation on X and ¥, € X. We define
Uld] = {y : (x ») € U for some x in 4} and U [ = {p: (xp ¥) € UL

If A is a subset of X and U and ¥ are two relations on X, then we can ver| l"y. thit

(U o V) 4] = UV [4]].

Uniformity and Uniform space.

Let X be a nonemply set. A nonempty 'family 9 of subsets of X % X is said to be
a uniformity on X if the following hold :

(i) A © U for every U ¥

(i) If U e %, then UF' e

(iii) If U/ €7 there is a member ¥ of ¥ with F o ¥ c
(v) If U}, U, are in % then U, n U, e

(VMWW cCXxXand Uc W for some U in 9 then W e ¥
The pair (X, %) is called a uniform space.

Base and subbase of a uniformity.

Let (X, 9/) be a uniform space. A nonempty subfamily 24 of % is said to be a base
for the uniformity 9/ if for every U in % there is a member V of 98 with V — [/

A nonempty subfamily < of 9 is said to be a subbase for the uniformity ‘% if the
family (96 of all finitc intersections of the members of &#) is base for the un iformity #/

Theorem 1 : Let X be a nonempty set. 4 nonempty family P of subsets of X = X
is base for some uniformity on X if the following hold.

(i) A ¢ U for every U e .

(i) If U € P, there is a member ¥ of B with ¥ c o7,

(iii) If U & P, there is a member V¥ of B with JoV c U,

(iv) If U}, U, are in B, then U, m U, contains a member of p.

Proof : First suppose that [ is a base for the uniformity % on X, Then B < % and
each member of % contains a member of P.

(i) Let U e B, Then U e % and so A = U/,
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(ii) Let U e B. Then U € % and so U e
So there is a member ¥ of § with ¥ < UFL

(iii) Let U & B. Then U €%, So there is a member I of % with W o W C U. Again,
W contains a member Vof . So Fo Vo Wo Wa U

(iv) Let U, U, belong to . Then U, U, are in % and so U, N U, €% Hence there
is a member ¥ of B with V' U, n U,

Thus the conditions are necessary.

Next, let B be a nonempty family of subsets of X »x X satisfying the given conditions,
Denote by % the family of all those subsets W of X * X such that U e iff V¥ c U
for some ¥ in B. Clearly p < %

(a) Let U €% Then there is a member V of B with ¥ U. Since AC V, A c L

(b) Let U7 €% There is a member V of B with ¥ = U. Also, there is a member W
of B with W < V. Since ' c U, W C F!, So F! e

(c) Let U &% Then V — U for some F in §. So there is a member W of [} such
that WolW < V. Since p < % W e So, WolW < UL

(d) Let Uy, U, be two members of % Then there are two members F, ¥, in [} with
¥, c U, and ¥, c U,. By condition (iv), there is a member V of f with V' C ¥, m ¥,
So ¥V c U, n U, This gives that U, mn U, €%

(e) Let ¥ be a subset of X % X such that U < W for some U in % There is a member
Vin B with ¥ c U So ¥V c W which gives that W e %

Hence, % is a uniformity on X. From the construction of %/ it is obvious that [} is
a base for the uniformity %

Exercise : Let X be a nonempty set. A nonempty family s of subsets of X * X is
a subbase for some uniformity on X if the following hold.

(i A c U for every, Ues.

(ii) If U € &, then there exist finitely many members ¥, ..., ¥, (say) in s such that
UF contains ¥y .o Y W, '

(iiiy If U € s, then there exist finitely many members ¥, ..., ¥ (say) in s

75




with VoV © U. Where V= ¥, N ..... AV,

Solution : Let the family 5 of subsets of X x X satisfy the given conditjons.

Dencte by B the collection of all finite intersections of the members of . Clearly
s C B

(a) Let Ue P. Then U=m_ U, where U, € s, Since A © Uforeachi, Acnl U, =U

(b) Let U P. Then U=n,U, where U € s. We have U =1, = 7. For each
i, there is a member V, in s with ¥,y Write ¥ =L}, Then ¥ € . We have
Venu! =u!,

(c) Let U € B. Then U= i/, where U es. For each i, there is a member W, of

s with WolW,c U, Let W=n{_ W. Then W € B and Wol < Ly (W, oW, ) iU, = U,

(d) Let U and ¥ be any two members of f. Then U=, U, and ¥ =, ¥, where
U, F e s
Wehave UNn¥V=UnU,n.nU, NV, 0 ¥y o .m V. This gives that UnVep.

Thus P is a base for some uniformity % on X. From the construction of B it is clear
that s is a subbase for the uniformity 9

Theorem 3. Let (X, %) be a uniform space and let T denote the family consisting
of the void set' ¢ and all those subsets § of X such that if x € S, then Ulx] < § for some
Uin % Then T is a topology on X.

Let x, € X and % = {Ux,] : Ue¥% }. Then ‘% is a neighbourhood base at Xge

Proof : Let x € X and U € % Then Ulx] = X which gives that X € 1. Let §, and
§, be any two members of 7. Write § = S;n §,. If § = ¢, then § €1. Suppose that §
#0 Let x € §.

Then x € S, and x € S§,. So there are members U, U, in 9 such that U, [x] € 5,
and U, [x] < §;. Write U= Un U,. Then Ue%and U [x] ¢ U, [x] c §, U] c Uy[x]
C §,. So Ux] c § n §,. This gives that § € 1.

Let o= {§, : o € A} be a nonempty subfamily of T and let § = U{S, 1« eA}.
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Let x € §. Then x € S, for some o in A. There is a member U of % with Lx]
c S, Since§,cS, Ulx]c S SoSer

Therefore T is a topology on X.

For the second part we proceed as follows. Let x € X and U be a member of
Consider the set Ulx,]. '

Let 4 = {x : V[x] © Ulx,] for some ¥ in %}, Taking V' = U, we have Vix) € U
[xp] which gives thal x, € A. Also from definition we get 4 © U [x,]. We now show
that 4 is open.

Let x € A. Then there is a member V' in % with V[x] © Ulx,]. Choose a member
W in % with WolW c V.

Take any y € W [x]. Then (x, y) € W. If z € W [y], then (v, 2) € W. So (x, z) e oW
C V. This gives that z € V[x] = W[yl € Ulx] = y € 4.

Thus Wlx] = 4. So 4 is open.
Since x, €4 © Ulx,), it follows that Ulx,] is a neighbourhood of x,.

Let W be any neighbourhood of x,, Then there is an open set G with x, eG < W.
So there is a member U of % with Ulx,] € G < W.

This gives that the family.
Y= {Uxy] : U €% is a neighbourhood base at x,, .

Note : We say that the topology © on X in Theorem 3, generated by the uniformity
%, is the uniform topology.

Definition : A topological space (X, 1) is said to be uniformisable if there is a

uniformity % on X such that the topology generated by the uniformity % is identical
with the topology T.

Example 1 : Let (X, 4) be a pseudometric space. For positive number 7, let
W,={(x, ) :x, y €X and d(x, y) < r}. and p = {W_: r> 0}.
We verify that B is a base for some uniformity on X.

{i} Since d(x, x) = 0 for all x €X, it follows that A © W, for every r > 0,

(ii) Since d(y, x) = d(x, ) for all x, y in X, we get lr}':__' =W _forr> 0. So W;lEﬁ.

77




(iii) Let » be any positive number and let p:%r. Let (x, j) €W, 0 W, Then (2, 2),

(v, ) € W, for some z in X. We have
dx, ) £ dlx, z) +dlz, y) <2p =1
This gives that (x, ) € W, and so
W,o W, C W.
(iv) Let Wr,, Wr, € P. Let r = min {r,, r,}. If (x, ¥) € W, then d(x, y) < r =
(1 = 1, 2) which gives that W, er and W_c H’:_z. So, W, C W,_1 (i W,,z,

‘Hence [ is a base for some uniformily % on X. A subset U/ of X % X belongs to
Wil W, c U for some » > 0,

We now show that the topology T, gcnur#ied by the pseudometric d is identical with
the topology 7, generated by the uniformity % '

Let G €1, and x €0. Then there is a positive number r such that

Sx, r; d) © G,
where S(x, r ; d) = {y : y €X and d(x, ¥) < r}
= W_[x].

Thus W _[x] € G. Since W, €% G en,.

Again, let G €71, and x €G. Then there is a member U in % with Ulx] © G. Since
P is a base for "% there is a positive number r, such that ¥, c U. So W, [x] = Ulx] cG.

Since W, [x] = S(x, r ; d), S{x, r ; d) € G. This gives that G € t,. Hence T = T
Therefore the pseudometric space (X, d) is uniformisable.

5.2. Uniformizability and metrizability

Example 2. Let X be a nonempty set and p be a family of pseudometrics on X. For
d €8 and r > 0.

Let W, = =@y :xye Xand d (x. p) =), and
s={Wy,:de Pandr> 0}
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Let d € p and » > 0, Since d (x, x) = 0 for all x € X, we have A C Wia - Again,

since d(y, x) = d(x, v) for all x, y in X, W{::f.lr'] = Hf{w,].
Also Wy | ol C Wy o
et ") < "

Therefore s is a subbase for some uniformity ¥ on X. Let [} denote the family of
all finite intersections of the members of s. Then B is a base for the uniformity u.

Let 7, denote the lopology generated by the family p of pseudo-metrics and 1, the
topology generated by the uniformity w.

Let G et, and ¥ €G. Then there is a set of the form

B=nr, Sx, r, d), where d €p and r, = 0, such that x eB C G,

Since 8(x; 1, d) = Hidi-':«}[x-i} we have B=n,S(xrd)=W][x], where

T
W=r 1) € 1

This gives that G €1,.

Again, let G €7, and x €G. Then there is a member U in # with Ulx] € G. Since
B is a base [or w, there is a set of the form

W=, W{“‘r’-"i} where d, €0 and #, > 0 such that W cU.

So Wx] € Ulx] € G.

Since W [x] = mil; S(xn.d;), we have
f“l:':u"?(x,f}:d.-)CG So G €T,

Hence T, = 1,.
Theorem 4 : Every completely regular space is uniformisable.

Proof : Let (X, T) be a completely regular space. We first show that ils ropology
T can be generated by a family P of pseudometrics on X.

In fact, let us denote the family of all real valued continuous functions defined on
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X by C(X) and let C°(X) denote the subfamily of C(X) consisting of bounded functions.
For a finite number of functions f, f; .., f, €C(X) define.

P st (59) = max{| (x) = A (A2 (x) = 0ol i ()= 1 ()}

]

for x, ye X. It is easy to verify that Pg 5 5 is a pseudo-metric on X. Let us consider

the family p of all these pseudo-metrics Py 5 5 where £, £, ., L 8CEN),

Observe that from the construction it follows that every p : X * X — R is continuous
where p €p. Let T, be the topology induced by p. Let G €1, and x €G. Then we have

IQS{I, H,P;)={J’EX=Pf[£P}<’}} C G forsome r, > 0and p, € p,i=1,2, .n
Take a fixed /. If p, is generated by f,, £, . , f; (say) €C"(X) then clearly

i :
xem_}}_] Uy &) = s f; (x) + 1) € S(x, r, p).

k
As each f is continuous so n f E{ Si(x)=r f,-[x}+rr-)=v,- (say) € T and this shows

that

n
Xxenv=v (say) C G,

where v € 1. Hence & € T,

On the other hand is U € 1 and x € U, by complete regularity of X, 3 a function
S eC(X) such that fix) = 0 and fy) = 1 ¥y € X\U. Then clearly pE P and:
1
x € Sx, E,pj;_;-:: §8

This shows that U €t,. Therefore T = 1.
For din P and » = 0, let
Wi = x2) i x p X and dx, y) < r}

and s = {W, , :d € pand r> o}
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Letd € 8 and » = 0. Since d(x, x) = 0 for all x €X, A CWM o Again, since d(y,

x) = d(x, y) for all x, y in X, we get HJ’I:;}’}=FJV{#}_ Also H}ﬂrlﬂa}i’{dlr]cﬁidﬂ
) 2

Therefore s is a base for some uniformity w on X. Denote by B the family of all
finite intersections of the members of s. Thus [ is a base for the uniformity u. Let Ty
denote the topology generated by the uniformity w.

Let G €t and x €G. Then as before d, e P and r, > 0 there is a such that x eB
=8 r,d)c G

_Since Sx, r, d) = H{: d m}[x]eti,

Thus W[x] € G which gives that G &7, Again, let G €1, and x& G, Then there
is a member U of u with Ulx]c@. Since B is a base for w, there is a set of the form

W:ﬁﬁlﬁﬂ:ﬁ-ﬁ,ﬂ (d, €0 and r)
such that W — U Thus Wx] c Ux] c G.
Since W[x] = niL8(xr.d), it follows that Get. Hence T = o

Therefore the space (X,1) is uniformisable.

Definition : Let X be a nonempty set. A mapping g : X x X = R is said to be a
quasimetric on X if the following hold.

(i) g (x, ») =2 0 and g(x, x) = 0.
(i) g (x, ) = g (%, 2) + 4(z »)
for x, y, z in X

Theorem 5. (Metrization Lemma) :

Let X be a nonempty set and let [Uﬂ}:’zﬂ be a sequence of subsets of X x X such
that (i) U, = X = X (ii) A c U for each » and

(i) oo Lot UL (=21, 2,3 s

Then there exists a quasimetric g on X such that

@Uclixigr, W<2""RJcl (n=1,2273 .)
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If each U, is symmetric, ¢ becomes a pseudometric,

Proof : It is easy to see that U, = U, for n = 1, 2, 3, ... We define a mapping
I X=X — [0, ==) as follows.

fla, =2 if (x, e U

P

I Ill' Lﬂr'
=0, if (x, y) eU, for all n.

Now we define the mapping g : X % X — [0, =] as follows : Let (x, ) €X = X
Then

g (v y) = inf {if {xr—Lxr)}

where the infimium is taken over all finite sequences {x,, x|, x5 ., x,} € X with
Xo = XX =)
It is obvious that g(x, ») 2 0 and glx, x) = 0.

Let x, ¥, z be three points of X. Choose any € > 0. Thus there are finite sequences
{255 XKy Xay i x,} and {z;, zj, 25, o 2, In X with x; =x, x, =2, z; =z and z, = y, Such
that

!
E;f(x,-_l,x,} <q(xz) +%E
i

gf(zj—]:zi) {q{Z.y] +%a

Now, {Xg *j5 X35 s Xpp 25 Z5y -, £,} i5 & finite sequence in X with x;, = x, z_ = . So.

a(5)= f__zlf(xf;;. )43/ ().

O, g% ») < 4G, 2 + 4z ») + .
This gives that

alx, ¥) < glx, 2) + q(z, y).
Thus ¢ is a quasimeiric on X.
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To prove the relation (a) we first prove the inequality

k
(b) fxy, ) S 2 ;f (xi-p%:)

for any finite sequence {x; X, x;, ., x,} C X,

Clearly the inequality (b) holds for k = 1. Take any positive integer m > |. Suppose

that the inequality (b) holds for all positive integers X < m.

M

Let §=3% f(x_,x) and § > 0.
=l

We consider the following cases :

0 f(.ru,x;]izlﬂ' and (ii) f(xn,x.}>-2‘.s.

Case (i) : Denote by & the largest positive intéger such that

k
Ef {"'H-xr]'ﬁ%& Thus k < m
=l _

Clearly ' f (x,_l,x,ji%ﬁ'.
. =kt

Also fix, x,.,) = §.
By induction hypothesis

k
S(xpx) < lg.f{r;,;.x,-] <8

and S (Xe0%m) €2 ng (%) <8
i=k+

Let # be the least positive integer such that 2 < §. Then clearly (2 (0 2

and (x,,, %,) all belong to U,. Again since U, 0 U, 0 U, € U, ,, (x5, 5,) €U, ,.
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m
So flxpx,)s2?<28=23" f(x %))
=l

Case (ii) : We have

fx,, x) = § and éf[,ti_].xf}«:%.i

By induction hypothesis, flx,, x,) s'zz %) =8,
=2 f

Let # denote the least positive integer such that 27! < S Thus (xge %))s (3, xoyedl
So (x, x) eUp U =AolU o U, c U .
This gives that

ﬂxﬂ’ xm} = A-itl = 98— Zif{x,_h.x,]
i=l

Suppose that § = 0. Thus fix_,, x) =0 fori=1,2, .., m. Let n be any positive integer.

Then (xy, x,), (x. ;) € U, 8o (xg, x;) € U, 0 Uy, © U, This gives that (x;, x;)

€ Mg U = W (say).

Similarly (x;, x;) €W, (xu,_ X,) €W. At (m — 1) th step we get (x;, x, )e W '

So fixg, x,) = 0, and

R Xy = 23=2:Zlf[x,‘—11xm)' ; |

Thus in any case the inequality (b) also holds for k = m. Hence by the principle
of finite induction (b) holds for every positive integer k.

Take any positive integer # and let (x, y) €U,

Then g(x, ¥) S flx, y) < 2711 < 22,
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This gives that
(¢) U, c{(x, ») : qlx, y) < 272},

Now let g(x, ¥) < 272, Thus there exists a finite sequence (e ¥ Xy e MR X
with x; = x, x, = y such that

i Flrnx)<2™%
i=1

By inequality (b) we have
{5 ’
f{x! .]"I} =ﬂ-xg! I,r‘} = EZ:I (I,__i,x‘.){Z_H ¢

1=

Since flx, ¥) takes values of the form 0, 222 (p = |, 2, 3, .) it follows that
fx, y) < 2742,

S0 (x, ¥) €U/, which gives that
(d) {Cx, ) i glx, y) <22} C U,
Combining (c¢) and (d) we obtain (a).

If each U, is symmetric, then f{x, y) = fly, x) for all x, y in X. This implies that g(x,
¥) = qly, x). :

So g is a pseudometric.

Theorem 6. Every uniformity on a set X can be generated by a‘ family of
pseudometrics on X,

Proof : Let u be a uniformity on the set X, Let B be a base for the uniformity
such that each member of [} is symmetric and is different from X x X. For each V in

B we choose a sequence {U,(v)}" of symmetric seis in u such that

UShoUSho U cUY,
where Uﬂi"]'= X ®x X and Uli'ﬁ' = F,

By metrization Lemma there exists a pseudometric d, on X such that
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(1) TP c{(x):d,(59) <2} U,

Let P = {d, : ¥ €B} : Denote by y the uniformity on X generated by the family P
of pseudometrics on X. For V € and r > 0, let
We, n = 1, 9) 1 d, (x5, ») < r}.
and 3, = {Wh_,}: ¥V ep and r = 0},
Thus B, is a subbase for the uniformity y.
Let U be any member of u, Since [ is a base for u, there is a member ¥ in B with
V< U. From (1) we have W, ,, c UM =V,

So W{,. 1)

Next let W €Y. Then there is a set of the form,

c U. This gives that U/ ey.

n

W:mfﬂw{w (V. €B and r, > 0)
such that j —w

Choose positive integers m, m,, ..., m, such that 272 <r(i=12..k). From (1) we

have
U () v <2} e W,
Write U=, U Then U eu and
j-' o) -
UCF‘\,,:'H"E.'H}-WCH".

This gives that W ew.

Therefore 9= u. Which proves the theorem,

Theorem 7 : As in theorem 6, for every ¥ & % We can construct a sequence {U:]

of symmetric sets in U such that
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Uy=XxX, i'=v and

¥ ¥ v v
el ol ety ¥n eN.

By metrization Lemma there is a pseudometric @ on X such that

Uy e :{x, Midfxy) < 2_‘"*2} cFr .

clearly {(x, ») : d, (x, ) < 1} cU]=v.

We will first show that the pseudometric d, thus constructed is a continuous function
from X = X to R.

Take any point (x,, ¥,) € X *X and choose € > 0. We can find # € N so that

2m2 < % Then taking U} = ¥ (say) we have a W €% such that

@y EW=d %)) <5

Consider the open neighborhood W (xg) * W () of the point (x,, v,) in the product
topology of X x X. Clearly for (x, y) €W (x;) * W (y,),

1, (x0:v0) =, (vp)| £, (x0.6) + d, (130) < 5 + 5 =e.
This proves our assertion.

Finally tc prove that (x, T) is completely regular, choose x;€ X and a closed set F,
X, F. Since 7 is induced by the uniformity % S0 3 a ¥ € %’such that Vx| n F = §.
Define /1 X — [0, 1] by f{x) = min {1, d, (x;, x)}. Then fis continuous (by above assertion)
and flx,) = 0 and fy) = 1¥y €F. This completes the proof. '

Theorem 8 : A uniform space is pseudometrizable if its uniformity has a countable
base.

Proof : Let (X, %) be a uniform space with a countable base {Vﬂ}:;u for its uniformity

1, where P’ﬂ=X><X.
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First observe that B'={¥,}" ~where 7! =y, ¥, against forms a countable basis

of P consisting of symmetric sets. Let Uy =¥ = X » X. First choose U/ | € ¥ such that
Uyo U, U, and then choose U, € U such that olr| © U,. Then

U"f‘!nU”,uU’,{:U",DU”EGU'IQE.CU"IDU’IGU"laU",CUroU"Ic:
U, '

Kake U™, = U”, n ¥, and choose a member U, (say) from B such that U, c U/",,
Then U, is symmetric,
UycVadUoUoU cU,

For each positive integer n we proceed in this way.

-Hence we obtain a sequence of symmetric sets ()", in u which forms a base
for u and possesses the properties. |

(i) U, = ¥, (i) U, ¥, and (iii) Uol,olUclU ,

By Metrization Lemma there exists a pseudometric & on X such that

(D U < {(x, ») : dx, y) <2 c Ehondie= 13, )

For any positive number r, let

W,=1{(x, ») : x, y €X and d(x, y) < r}
and B = {W, : r > 0}.

Then P is a base for some uniformity % on X, We verify that #'= y,

Let W e u. Since {U,]”  is a base for the uniformity u, U _, € W for some positive
integer n, Choose a positive number » with » < 2772 Then from (1} we have
W,cU_ cW.
This gives that W e 9

Next, let W € % Then W, c W for some r > 0. Choose a positive integer n with
272 < p | Then from (1) we have U, € W_c W which gives that W € u.
Hence %= w. Therefore the uniform space (X, u) is pseudometrizable,

Definition : Let (X, u) be a uniform space. A subset £ of X is said to be totally
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bounded if for every U in u there are finite number of points x; x,, ..x, in X such that
Ecul, Uk

Example 3 : Every compact subset of a uniform space is totally bounded.

Solution : Let (X, ) be a uniform space and let £ be a compact subset of X, Take
any U in u. For x € E, Ulx] is a neighbourhood of x. So there is an open set G, with
xC G, C U] Let &F= {G : x € E}. Then & is an open cover of the set E. Since
E is compact, there are finite number of open sets G_q, fo ] 6 rin 2% such that

5

EcULG,
Since Gx, c Ux] (i = 1,2, .., n) we get
ECU;LUEIEJ.

Hence E is totally bounded,

5.3 Cauchy nets and Cauchy filters : Completeness.

Let (X, #) be a uniform space. A net {S : n € (D, 2)} in X is said to be a Cauchy
net il for every U in wu, there is an element n, in D such that

(X, x)elUfor all my nin D with m=n, n2n,

A filter & in X is said to be a Cauchy filter if for every U in u, there is a point
p in X such that Ulp] <7 .

Completeness : A uniform space (X, #) is said to be complete if every Cauchy net
in X is convergent. f

Theorem 8 : A uniform space (X, u) is complete iff every Cauchy filter in X is
convergent,

Proof : First suppose that the uniform space (X, %) is complete.

Take any Cauchy filter & in X. Let {s, : 4 €7} be a derived net of the filter
=

Let I/ be any member of u. Choose a symmetric member } in u with VoV < U. Then
there is a point x, in X such that V[x,] € <F.
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Write 4, = F[x;]. Take any 4, B in &Fwith 4 c Ay BC A, Then s, s, € Ay = Vix,l.

So (s, x,) €V, and (55, x;) €V which gives that (s, Sgp) € VoV U Thus {s,
: A €47} is a Cauchy net in X. Since (X, u) is complete, {s, : 4 €7} is convergent,

Let p = lims,. Let A € &% Choose any B in Fwith B C 4. Then s; € B < 4 which

gives that p € 4. So p is a cluster point of &% Since ¥ is a Cauchy filter, o7 converges
to p. [see Ex.4 page 18].

Next suppose that every Cauchy filter in X converges. Let {s, : n (D, 2)} be a
Cauchy net in X. Denote by & the derived filter of the net {s, : n €D}. Take any U

in . Then there is an element n, in D such that (x, x,) €U for all m, # in D with m
2 My, 1 2 ny. In particular

(xmx,,n)a Ufor all m in D with n 2 n,
Or, x, € U[xﬁ,ﬂ] for all n in D with n 2 n,.

This gives that U [x,,u]e o Thus &7 is a Cauchy filter in X. By our hypothesis «#

converges to a point x; in X
This completes the proof of the theorem.

Exercise : Let (X, ) be a uniform space and let &# be a Cauchy filter in X, If Xy
is a cluster point of & then <& converges to x;.

Solution : Let U be any member of % Choose a symmetric member ¥ of u with
VoVo¥ c U. Since & is a Cauchy filter in X, there is a point p in X such that ¥[p] € &%

Again, since x; is a cluster point of &, X, € V[p]. Then Vix,] n Vp] # ¢. Let z
€Vlxy] m Flpl. Then (z, x,). € ¥ and (z, p) €¥. Let u €V[p].

Then (v, p) € V. From above three we see that (v, x,) € VoVoV C U; so u € Ulxg]
which gives that Flp] © Ulx]. Thus Ulx,] €& .

Therefore <# converges to x,.
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Theorem 9 : A uniform space is compact iff it is totally bounded and complete,

Proof : Let (X, ») be a uniform space.

First suppose that X is compact. Let U/ be any member of » Take any point x in
X. Then Ulx] is a neighbourhood of x. So there is an open set G, such that x € G

Ulx]. Let
G = {G, : x €X}.
- Then G is an open cover of X. Since X is compact there are finite number of open

seis GxﬁGxil"‘Gx"in (7 such that.
X=U:-I=IGI‘
Since G, c Ulx], we have

X =, Ulx].
So X is totally bounded.

Let &# be a Cauchy filter in X. Since X' is compact, <% has a cluster point x,, (say).
So & converges to x, Hence the space X is complete.

Mext, suppose that the space (X, ) is totally bounded and complete.
Let & be an ultrafilter in X, Take any member U in . Since X is tutui];_l,r bounded,
...... x_in X such that

there are finite number of points x, x, %

() X=u, Ulx].

Since < is an ultrafilter and Xe <%, (1) implies that Ulx;]Je &# for some ( (1 =i =

n). So & is a Cauchy filter in X Since X is complete, & is convergent. Hence the space
X is compact.

This completes the proof of the theorem.

Definition : Let (X, ») and (¥, %) be two uniform spaces and let f: X — Y. The
function f is said to be uniformly continuous if for every member ¥ of %, there is a
member U in % such that
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. X') U = (fix), fx) V.

Note : For any f: X — ¥, let us define f, : X% X = ¥ % ¥ as follows, For (x', x')
EX x X, f; (¥, x") = (fix"), Ax")). Then the uniform continuity may be defi ned as follows
: The function f: X — ¥ is said to be uniformly continuous if

f7' (V) €u for every ¥ in %,

Theorem 10 : Let (X, u) and (¥, %) be uniform spaces and let J: X — ¥ be continuous,
If X is compact, then f is uniformly continuous.

Proof : Let V' be any member of % Choose a symmetric member Vo of ¥ with Vo
Vo © V. Let x € X. Since f is continuous, there is a symmetric member W™ of u such
that -

(1) u e POX] = flu) ev, [fx)].

Choose a symmetric member U in u with U™ o U™ ¢ F®. Since LT is a
neighbourhood of x, there is an open set G, with x eG, c UW [x].

Let G = {G, : x eX}.

Then G is an open cover of X. Since X is compact, we can select finite number of .
open sets Gx], ze, o Gxn from the family G such that

A= '*J:L| Gx“

Since er_ c U¥[x], we have

(2) X =Ur, URilx]

Let U= Njw U%), Then U eu.

Take any two points x', x” in X with (', x*) €U, From (2) we see that x'e U%/)[x |
for some i (1 =i < n). Thus (', x) e ) ; also (v, x) eV < M),

So (¥, x) €U o L) c W), that is, x” & W) [x;]. Therefore by (1)
(Ax"), fix) € Vo and (Ax"), flx)) €V,
So (fix), Ax") €V, 0 ¥, V.
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Hence f is uniformly continuous,

Theorem 11 : Let X be a nonempty set and let {¥, %) : a € A} be a family of
uniform spaces and for each a €4, £, : X — ¥,. Then there exists a smallest uniformity
u on X relative to which the functions f, are uniformly continuous.

Proof : We prove the theorem by the following steps.
() Let s = {(£),7 () : U, €% and a €4}.

We first verify that s is & subbase for some uniformity U on X. Let A = {(x, x) :
x € X} and A, = {0V, ¥)) 1 ¥, €Y}

(i) Let U'gs. Then U = (f),”' (L) for some a €4 and U e %, Take any x €X.
Then (£(x), £i(x)) € A, ie (), (x, x) €A, U

So (x, x) €(£),"! (L)) and hence A cU.

(ii) Let U s, Then U= (), (L) for some @ €4 and U, € % There is a member
V,in % with F,0 F,c U,

Write ¥ = (£),” (V).

Let (x, y) € ¥ o V. Then there is an element z in X such that (z, ¥) €V and (x, 2)
e V. This gives that (£), (z, ¥) €V, and (), (x, z) V..

i€ (f(2), L0)) €V, and (£,(x), £(2)) €V,
= (f,(x), L,0)) eVoV, c U,

e (1), (x, y) el

= ey U)=U

= oV cl

(iii) Let U €s. Then U = (), (U)) for some a €4 and U, €%, Since U €%
we have

W= (L) (U es.
Let (x, ¥) €W. Then (f), (x, ¥) e Ul

ie. (f(x), L) eU;!
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= (L) L) €U,

= @x)ef)' (U)=U

=5 () 4]
= et

From (i), (ii) and (iii) we see that s is a subbase for some uniformity » on X,

(II) Let @ €4, consider the function £, . Take any member V_ in ¥ Then ] = (£
(V) eu.

Let (x, ¥) € U. Then (f), (x, y) €V, ie. (f(x), £,00) €V,

Hence f, is uniformly countinuous.

(IlI) Let i be any uniformity on X relative to which the function f, (a € A) are
uniformly continuous.

Let 7 €u. Then there is a set of the form

W= i (f, ;Jz‘l (V) (a4, v, € %) such that W c U. Since the functions fa,, fa,,...
i
f“" are uniformly countinous relative to the uniformity §, there are members Wi Way o

w, in # such that

@ y) €W, = (f, (), f,0) €V, (i = 1, 2, ..., n). Write W =i, W, Let (x, y)E .

Then (x, ¥) €W, and so (,ﬂ,‘_(x}, )‘;i{y}) = Vu‘
=» 'U;,); & ) €V, = (5, ) eUe) (7)) = We U,
. - =1

So W< U. which gives that U e &.

Hence u —# and the proof is complete.

5.4. Proximity Spaces :

Definition : Let X be a nonempty set and let & be a relation on the power set P(X)
of the set X. Suppose that & satisfies the following axioms. ;
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(1) For 4, B in PX), A5 B= B b A.

(2) Let 4, B, C be in P(X). Then (AUB)S C iff A & C ot B8 C.
(3) For 4, B in P(X), 4 8 B=> A # ¢ and B # ¢.

(4) Let 4, B be in P(X). Then AnB # ¢ = A4 d B.

(5) Let 4, B be in P(X). If AB B, there exists a subset £ of X such that 43 £ and

 F6B, where E denotes the complement of £ and & denotes the negation of &.
Then & is called a proximity on X and the pair (X, &) is called a proximity space.
Example 1. Let (X, d) be a metric space. For two subsets 4, B of X, let d(4, B) =

inf{d{x, ¥) : xed, yeBj.
Now define the relation & on the power set P(X) of the set X as follows ; For 4,

B in P(X), let
ABB hold iff d(4, B) = 0
Then & is a proximity on the set X.

Solution : (1) Since d(y, x) = d(x, y) for all x, y in X, it follows that d(B, 4) = dl(4,
B) for 4, B in P(X). Let 4, B be in P(X) and 4 8 B. Then d(4, B) = 0. 50 d(B, 4) = 0
which gives that B & A.

(2) Let 4, B, C be in P(X). Suppose that (4UB)5C. Then d(AB, C) = 0. Let ABC,
Then d(A, C) = r > 0. Choose any € with 0 <€ <r.

Since d(4UB, C) = 0, there is a point x in 4 W B and a point Z in C such that

di Z)F B e av L aen i0R)
" If x €A, then d(x, Z) = d(4, C) = r > & This contradicts (*). So x €8 and

d(B, C) < d(x, Z) < &.

Since £ > 0 is arbitrary it follows that diB, C)=0. 5 B & C.

Next, let 4 8 C. Then d(4, €) = 0. Choose any £ > 0. Then there is a point x in
A and a point Z in C such that d(x, Z) < e. Since x €4UB, we have dlAUB, ) = d(x,
Z) < e. Since £ = 0 is arbitrary, we have d(4UB, C) = 0. This gives that (AwB) 6 €.

If BSC, as above we can show that (AUB) § C. Thus (4UB) & Ciff A5 C or BaC.

(3) Let 4, B be in P(X) and ABB. Choose any € > 0. Then there is a point x in 4
- and a point y in B with d(x, y) < & This gives that 4 # ¢ and B # ¢.
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(4) Let 4, B be in P(X) and AnB # ¢. Take any x € AnB. Then x €4 and x €85,
Since d(A4, B) < d(x, x), we have d(4, B) = 0. S0 4 & B.

(5) Let 4, B be in P(X) and let A38. Then
KA By =E>0 o . o (H9)

Let £={y:yeX and d"l:_].{.ﬂ}{%!'
Assume that 4 & E. Then d(4, E) = 0. So there is a point x in 4 and a point y in
E with d(x, y) <5r. Since d(y, B) <z, there is a point Z in B such that d(y, 2) <Ir

We have d(x, Z) < d(x, y) +d(y, Z) {%r +%r = %r. Since d(4, B) < d(x, 2), d(4, B) 5%- r

This contradicts (**). Hence 43 £.Next, let £88. Then d(E,By=0. So there is a point

xin E and a point 3 in B such that d{x, ) {%r. Since d(x, B) = d(x, y), we have d(x,

L]
B) {%r which gives that xe E. This contradicts the fact that xe &,

Hence EBB8.

Therefore & is a proximity on X.

Example 2 ¢ Let (X, %) be & uniform space and let the relation 6 be defined
on P(X) as follows : For A, B in P(X), let A & B if (AxB)nU + ¢ for every U in %
Then & is a proximity on X,

Solution :

(i) Let 4, B be in P(X) and let 4 & B. Take any U in %/ . Then L-'e % and so (4=xB8)m
LF1# ¢. This gives that there is a point x in A and @ point y in B such that (x, y) € LF
bor (, x) €U. So (B % A) n U # . Hence B8A.

(ii) Let 4, B, C be in o(X). Suppose that (4UB) & C. Assume that 45¢. Then there

is a member ¥ in % with (4 x C)nV = ¢. Take any U in % Write W = UV, Then We %
Since (AUB)BC, [(4UB) = C] MW # §. This gives that there is a point x in AUB and
a point z in C such that (x, Z)e W. If x4, then (x, Z)e4 » C and s0 (x, Z) € (4 * C)"W
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C (4 x C) n ¥V which condradicts the fact that (4 x C)n¥ = ¢. So x €B. Hence (x, Z)
eB x C; and (x, Z) (B x C)nU, This gives that (B x O)nU # ¢ and B & C.

Thus (AUB)SC = either ASC or B & C. Let A & C. Take any Ue % Thus (4 = O)nU/
# ¢. This gives that [(4UB) * C]nU # ¢§. So (AUB)SC. Similarly B § C = (4uB)aC,

(iii) Let 4, B be in P(X) and let 4 & B. Take any U is % Then (4 x B)nU = ¢. So

there is a point x in 4 and a point y in B such that (x, y)eU. This gives that 4 # ¢ and
B # .

(iv) Let 4, B ep(X) and 4B # ¢. Take any point x €AUB. Then x €4 and x €8.
Let Ue% Since (x, x)e U, we have (4 x B)nU # ¢. So 4 & B.

(v) Let 4, B €P(X) and let 45B. Thus there is a member U, in % such that

A xXBnl =0 .. .. (1)

Choose a symmetric member V' in ‘% with ¥V 7' < U, Let

E={y:yeXand (y, 2)€V for some Z in B}. Assume that 48E, Then there is a
point x in A and a point ¥ in E with {x, ) € V. Aslo from the definition of E, there is
a point Z in B such that (y, Z)e V. This gives that (x, Z) eV VU, = (4 x B)nU, + ¢

which contradicts (1). Hence A3E.

Again, assume that E3B. Then (ExB)(\V #¢. So there is a point y in £ and a
point Z in B such that (y, Z)eV which implies that ye £. This coniradicts the fact that
yeE. Hence E§B.

Therefore 6 is a proximity on X,

Lemma 1 : Let (X, 8) be a proximity space and let 4, B, C, D be subsets of X,
(i) If 4 & B and ACC & BeD, then C 8 D.
(ii) If xeX and 48x & x8B, then A3B.

(iii) If 488, then 458, ASB and A8B, where A= {y: yeX and y § A}.

(iv) 468 if A5B, where A is defined as in (iii).

(v) If 488, then Bc X\ A and Ac X\ B.

Proof : (i) Suppose that 4 8 B and 4 € C & B © D. We have C = AU(C \ 4) =
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AVE, where £ = C\ A, Since 488, we get (AUE) 8 B ie., C5B. Again, since D = Bu(D
\ B), we get CaD.
(ii) Suppose that there is a point x is X with
Adx and X868 ... ... .. (1)

Assume that 43 B. Then there is a subset £ of X such that

ABE and E3B .. .. .. (2)

where E= X\ E.
It xeE, then by (1) and (i) we have ABE which contradicts (2). Again, if xe E . then
(1) and (i) imply that E38 which also contradicts (2). Hence 488

(iii) Suppose that 48B. Thus there is a subset E of X such that
ABE and E3B .. ... (3

(a) Let y € B. Then yeB. If yec £, then Eyand so by (ii) E5B which contradicts
(3). So y € E ; this gives that §— p. This with 45 £ and (i) imply that 4§ F. .

Let yed. Then y84 and so Ady.

(b) If yeE, then y3E and by (ii) ASE which- contradicts (3). So y € F; this gives
that A< E, If A8B, then by (i) we get E5B which contradicts (3). Hence 43 B. Step
(iiia) implies that 48E.

(iv) Suppose that 48B. Clearly Ac 4 and B B. So by (i) 45B.

Next, suppose that 48B. .. .. (3a)

Assume that 48B. Then by (iii) A5B.
This coniradicts (3a). Hence A8B.
(v) Suppose that A3H. .. .. ()

Let yed. Then y84 and so 48y If yeB, then by (ii) 488 which contradicts (4),
So yeX\B. Hence Ac X\B.
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Let ye B. Then y8B. If y €4, then A8y and by (ii) 4B which contadits (4). So y
eX\4. Hence BeX\ 4.

Theorem 1 : Let (X, ) be a proximity space and for any subset 4 of X [et
C{4) = {y : y €X and ydd}.
Then C is the Kuratowski closure operator on X,

Proof : (i) Let A be any subset of X. Take any x in 4. There {x}4 # ¢ : 50 x §
A which pgives that xe C(4). Hence AcC(A).

Clearly C(¢p) = ¢ and C(X) = X

(ii) Let 4, B be two subsets of X and ACB. Take any xeC(4). Then x & 4 : so x
& B. This pives that xe C(B).

Hence C(4) c C(B).
(iii) Let 4, B be any two subsets of X,
Take any x e C(4d) u C(B).
Then x eC(4) or xeC(B)
This gives that x & 4 or x & B and so
x(Aus). = xe C(4UB).
Hence C(A)u C(B) © C(AUB). ... .. (1)
Next, let xe C(A\UB). Then x S(4UB) =
either x84 or x8B, This gives that xe C(A) or xeC(B) = xeC(AWC(B).
' So, C(AUB) © CA) U C(B) .. (2)
From (1) and (2) we have
CAUB) = C(4) U C(B).
(iv) Let A4 be any subset of X,
If A = ¢, then C(4) = C(¢) = ¢ and so
A =Cp) =9 =4
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Suppose that 4 # ¢. By (i) we have
C(4) c C(C(A4)). ... ... 3)
Let ye C(C(4)). Then
yoo ) .. .. (4)
Assume that yg C(4). By the definition of C(4) we get y8.4 and so p8C(4) which
contradicts (4). So yeC(4) and
C(C(A4)) = C(A).

Note : Let (X, 8) be a proximity space. For any subset 4 of X let C(4) = {y : yeX
and y 8 4}. Then by theorem 1, C is the kuratowski closure operator on X. This closure
operator C' induces a topology Ty ON X. We say that the proximity & induces the topology

Ty on X, and the topology T is compatible with the proximity &.

Theorem 2 : Let (X, T) be a completely regular space. Then there exists a proximity
& on X compatible with the topology 7.

Proof : Since (X, T) is completely regular, it is uniformisable. So there is a uniformity

% on X such that the topology induced by the uniformity % is identical with the topology
T,

Now define the relation & on P(X), the power set of X, as follows :

For 4, B in P(X), A & B if (4 x B)n#% ¢ for every Uin %, Then & is a proximity
on X. The proximity & induces a topology Ty o0 X Let A be any subset of X. Denote

by A and C(d4) respectively the t-closure and T -closure of the set 4.

Let xeA . Take any Ue #. Thus U[x] is a neighd of x. So ANI[x] # ¢. This gives
that there is a point y in 4 such that ye Ulx] ie. (x, EU.

So, (x, ¥) €(ix} » AU
e ({x}) x HNU # ¢ = x 8 A.

Hence xeC(4) = A C(A).

Next, let xeC(A).
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Then x 8 4 = ({x} »x AU = ¢ for any Ue %

Let Ue %. Then there is a point y in 4 such that (x, y)e U = ye Ulx]
= AnUlx] # ¢ = xe4d

So, C(4) c A4

Thus C(A) =A

This gives that T = T

Hence & is complatible with T.

Theorem 3 : Let (X, ) be a T space and let § be a relation on the power set P(X)

defined as follows. For 4, B in p(X), 4 & B iff AnB+# ¢. Then b is a proximity on X
compatible with 7.

Proof : We ifirst verify that 8 is a proximity on X, (i) Let 4, B € P(X) and 4 § B.
Then ANB+ ¢, Since BNA=ANE+ ¢, we get B § A.

(ii) Let 4, B, C be in P(X).

Suppose that (AUB) & c.

Then AUBNC=¢ ie.(AUB)NC=d
e (AnC)U(BNC)=

This gives that either AnC#dor BrC=4¢.
so either 4 8 C or B § C.

Next, suppose that 4 8 C. Then AnC=¢.
This gives that (ANCyU(BnC)=¢.

ie. (AUBYNC=b

o (AUB)NC#6

So, (4UB) & C.
If 8 & C, we can show that (4UB) & C.
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(iii) Let 4, B € P(X) and let 4 § B. Then Eﬁﬁ;tdn.. If A = ¢, then A=¢ and so
AnB=¢ which is a contradiction. Hence A4 # ¢. Similarly B # ¢.

(iv) Let 4, B € P(X) and 4 n B # ¢. This gives that AnB#¢ and so 4 § B.

(v) Let 4, B eP(X) and 48 B. then AnB=4.

Since (X, 7) is a T, space it is normal. So there are open seis G, G, such that

AcG, BcG, and G, 1 G, = ¢.

Write £ = X\G|. Then E is a closed set. We have AnE=AnE=4

So ABE.

Again, since £ 2 G, O 7, E'CX|G2CX|.E and so cE{E}CX‘GE::X]E, where
E=X|E

This gives that ol (E)nB=¢= EBA.

Therefore & is a proximity on X. So it induces a topology T; on X

Let A be any subset of X. Denote by 4 and C(4) respectively the T-closure and

Ty-closure of A.
*eCll) = x84 = [Jadzp={xj0d=p [ [=(x]
=xed
Again, xed=> {x}nAz¢=> [xjnd=¢

=xdd= xe C4).

Hence C(d) = 4. = 1, = .
Therefore & is compatible with T
Lemma 2 : Let (X, 6) be a proximity space and let 4, B be any two subsets of X,

(i) A3X\B= 45.X\int(5)

(ii) ATX\B = A cC int(B).
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(iii) Let A5 X\B. Then there is a subset C of X such that AZX\C and C3 X\B,

where closure and interior are taken with respect to Ts):

Proof : (i) Let A5MXB. Then there is a subset E of X such that
ABE and ES(X\B) ... ..()
where E= X\E.

Let x €cl(X\B). Then xd(X\B). If xc E, then ESx and so E8(X\8) which
contradicts (1).

Hence x¢ £ = xeF; so cl(\B) cE.

This with (1) implies that 43(X\B).

‘Now y\ B =X\ int(B)

So AS[X\int(B)] ... .. (2)

(ii) Lct AB(X\ B). Then (2) holds. Take any x in 4. This with (2) implies that
xE[X ! irft[B]}; 50 x €int{#),

Hence Ac int(B).

(iii) Let A8(X\8). Then there is a subset £ of X such that (1) holds. Write C=X\E.

Then C = E and £ = X\C. From (1) we have A5(X \C) and CB(X\ B).

Theorem 4 : Let (X, 8) be a proximity space, Then the topology T, is completely
regular

Proof : Let 4 be a closed set in X with respect to the topology Tg and x e X\1. Write
Uy = X\, Then U} is an open set and x e U,

Since x € 4 = 4, x5(X\Up). [+ 4 = U
S0 there is a set £ c X such that
*8(X\E) and EB(X\Up) .. .. (1)
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Write U, = int(E). Then U, is an open set. By (1) and Lemma 2,
x5 (XU, and U, 5 (NU)

_There are subsets £, and £, of X such that x5 0\E,, £,5 X\Uy,and U, 5 XE,, E,3
Xy ... (2)
Write U, = int(E|) and U, = int{E?}.
Then U, and U, are open sets. By (2) and Lemma 2 we get.
X3 (MU, U, 3(0\U,) and

Uy 30\, U, § (A .. .. (3)
g " L -
[ IEQMCU%CU%CUHCU%CU%CU@
Denoté by D the set of numbers of the form

Tom=135..2"" andn=1, 2, 3

Then D is dense in [0,1].

Pm-:eéding as above we can select a family of open sets {U, 1 1 € D} such that
ift, 5 € D and ¢ < g, then

xEU,C[T,CUEEE?E:Un.

We now define the functions f on X as follows :

Let zeX. flz) = 0 if z en{U,: 1eD}
1if z € X\U,
= inf {1 : z €U} otherwise.

Clearly values of f lie in the closed interval [0, 1] and f{x) = 0 and flz) = 1 for all
z Ed,

Now we prove that J is continuous.
The family of all intervals [0, @), (b, 1] (0 <a, b < 1) forms a subbase for the topology
on [0, 1]. Tt is easy to see that

fz) < a & z el for some ¢ in D with t < a.
This gives that ! ([0, a)) = U{L/, : ¢ €D and ¢ < a}.
So £ ([0, &) is open, Again,
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Mz) = a & z lies outside of U, for some 1 in D with ¢ > q.

Sof! ((a I)=uv {0, :te Dand t> a}.
Which is open.
This gives that f is continuous.

Hence the space (X, t;) is completely regular. This proves the theorem.

Theorem 5 : Let (X, T) be a completely regular space and let it have a compatible
proximity & defined as follows : For any two subsets 4, B of X.

A Biff AnB#¢. Then (X, 1) is normal.
Proof : Let 4 and B be any two disjoint closed subsets of X, Then AF B. So there
is a subset E of X such that
AZE and E3B . (1)
Where E=X\E.
By Lemma 2, we have
A C int(X\E) and B C int(\E) = int E. ... (2)
Write G, = int(X\E) and G, = inl(E).
Then G, and G, are open. Clearly G NG, =
By (2) 4 c G, and B c G,.

Hence the space (X, T) is normal.

Exercise : Prove that the interior of a set. 4 C X endowed with a uniformity 9 is
A=B={xeX: V(x)c A for some Ve¥}

Solution : Since every open set G C A is contained in B, so it is sufficient to prove
that the set B is open. Take any x €B. Then there is a Ve % such that ¥(x) © 4. Choose
WeV such that W o W C V. Note that for any ye W(x), if z& W(y) then (x, y) € W and
(v, 2) eW and so (x,z) € Wo W c V= ZeHWx). Thus

W) € Mix) c A.

Since this is true for every ye W(x) this shows that W(x) c B. So x is an interior point
of B. As x is arbitrary, this proves that B is open.
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Exercise : Let X be a Tychonoff space. Let C(X) and C*(X) denote the family of
all real valued continuous functions and real valued continuous bounded functions on
X respectively. For every finite number of functions f,, £, .., ; €C(X) (or C*X))

g fye s £ G62) = max {| fix) — O}
l=i=sk

define two pseudometrics on X

Solution : It is easy to note that
dg g f6x) = maxilfi(x) = A& .. | filx) = fl}

=4 VMx eX
If x, y €X then since |[f(x) — (¥ = () - fix)|
for i = 1, 2, .. k so it follows that
dig o) =d; 4 5 00%)

Finally if x, ¥, £ €X then we have

[fix) - fi2)] < | filx) — £ + | £ = Szl
fori=1, 2, ..k chcc

dp s ®2)Sd, o (o) +d, (h2).

Exercise : Let P and P* denote the families of pseudometrics on X defined as in
the preceeding exercise. Consequently they generate uniformities %’and 7* on X Prove
that 9 and 9* induce the same topology identical with the initial topology.

Solution : Since any f, f;, ... f € C(X) (or C* (X)) are continuous and the modulus
function is continuous so every generated pseudometric
di o (6y) = max {|fi(x) = {10 .. [fx) — f)]} is a continuous function from X

% X — R. Thus every clement of P (or P*) is a continuous function from X x X — R
Hence the sets {(x, ¥) : d(x, ¥) < z'} where d €P and i €N are open in X % X and every
open set in the topology induced by % or ¥* is open in the initial topology on X

Now let us suppose that U/ is open in the initial topology in A" Let x; € U, Since
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X is a Tychonoff space, there is a continuous function £, i.e. f eC*(X) © C(X). Such
that flx,) = 0 and fx) = | for x e \U. Let

V= {(x,y}:dfix,y}-i%},

Then we have F(x,) © U and this implies that U/ is open in the topology induced
by ¥or F*,
Exercise : Let X be a Tychonoff space, C*(X) denote the family of real valued

bounded continuous functions on X, p* the family of generated pseudometrics. Then
(X, #*) is totally bounded where 7" is the uniformity generated by p*.

Solution : It is sufficient to prove that for every system of functions f, R P
.. €C* (X) and €> 0, there exists a finite number of points Xs Xy . X, €X such that
for every x €X, there exists an i < n with the property.

deg j‘[x,x;} = max{| f,(x) — fi(x)], ... | filx) - £} < €.
Since fi, f, .. [y € C*{X} so f,(X), f(X), ..., filX) are all bounded sets in R and so

we can find a bounded closed interval J < R which contains f,(X), .., /(X). Note that

J is totally bounded and so we can find a finite number of open intervals {AJ}L af
diameter less than € which cover J. Subsequently the family of sets of the form
Jr."'{ffj,}ﬁ.f;][x‘fj,}ﬁn-rﬂf;'{zih}, AR 1

where | = j, = m for every | < k is a covering of the space X. The diameter of each

of these sets with respect to the pseudometric d, i 18 less than €. Choosing a point

x, from each of the non-empty sets of the form (1) we get the finite sequence of points
Xy, X3, ..., X, which has the required property.

L

Group-A
(Short questions)
1. Describe the uniformity on the real number space which induces the usual
topology on R and the uniformity which induces the discrete topology on R

2, If the uniformity %"on a set X has » countable base then show that the induced
topology is first countable. .
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If the intersection of all members of the uniformity consists of the diagonal only
then prove that the induced topology is 7.

In an uniform space give an example of a set which is totally bounded but not
compacl.

. Give an example of a continuous mapping from a uniform space (X, %) to
anothcr_ur;ifnrm space (¥, %) that is not uniformly continuous.

. Give an example of a topological space which is not uniformizable.

. If a uniform space (X, %) is complete then prove that the space (M, W) s
complete for each closed set M < X,

. If v, and v, are two uniformities on X and v, > v, then show that v, induces
a stronger topology than the topology induced by v,.

Group—B
(Long (uestions)

Let (X, %) and (¥, %) be uniform spaces. Prove that f': (X, %) — (¥, %) is
uniformly continuous iff for every VeB’ there is a UeB such that U < fI(F)
where B and B’ are bases of %‘and V' respectively.

. Show that every family {F(} _, of uniformities in a set X has a least upper bound
i.e. in the set X there exists a uniformity ¥ which is weakest in the set of all
uniformities stronger than V_ for every seA.

. Let (X, ¥) be a uniform space, verify that the product of the topology induced
by ¥ on X % X is identical with the topology induced by ¥ % F in X x X

If a uniformity ¥ in a set X is induced by a metric p then prove that (X, V) is
complete if the metric space (X, p) is complete. '

. Let (X, V) be a uniform space and let (¥, V) be a complete uniform space. Show
that every uniformly continuous funciton f defined on (A4, ¥,) where 4 is a dense
subset of x, with values in (¥, F) can be extended to a uniformly continuous
function from (X, V) to (¥, V).

. Let X be a compact space. Show that there exists exactly nne-"Junifurmit}r Fin
A which induces the topology on X. The base for the uniformity V consists of
-all neighbourhoods of the diagonal which are open in the space X = X.
Prove that the filter associated with a Cauchy net is a Cauchy filter and conversely
every net associated with a Cauchy filter is cauchy. ’
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PREFACE

In the auricular structure introduced by this University for students of Post- Graduate
degree programme. the opportunity to pursue Post-Graduate cowrse in Subject introduced by
this University is equally available to all learners. Tnstead of being guided by any presumption
about ability level, it would perhaps stand to reason if receptivity of a learner is judged in the
course of the learning process. That would be entirely in keeping with the objectives of open
education which does not believe in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate level in different subjects are
being prepared on the basis of a well laid-out syllabus, The course structure combines the
best elements in the approved syllabi of Central and State Universities in respective subjects.
It has been so designed as to be upgradable with the addition of new information as well as
results of fresh thinking and analysis.

The aceepted methodology of distance education has been followed in the preparation
of these study materials. Co-operation in every form of experienced scholars is indispensable
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Unit 1 0 Introduction

Objectives : The object of this chapter is to present the basic concepts of ecology ulong
with the mathematical modeling of ecological system.

Structure

1.1 Ecology : Basic Concepts

1.2 Ecological Systems : Mathematical Models
1.2.1 Deterministic Models and State variables
1.2.2(a) Modelling in Discrete-time
1.2.2(b) Modelling in Continupus-time

1.2.3 Balance (or Conservation) Equation

1.2.4 Randomness and Stochastic Models

1.2.5 Summary

1.1 3 Ecology : Basic Concepts

Definition ; Envirenment:

The place where a living organism lives with its surrounding form its environment.
Environment consists of two parts ; abiotic and biotic, Soil, water, air and diflerent
minerals form the abiotic (or physical) environment, where as the biotic environment
15 formed of the plants and animals. The living organisms and environment are
interrelated.

Definition : Ecology

The branch of science which deals with the study of interrelationship among the
living organisms in relation with the eavironment is known as ecology. German
biologist E. Haeckel (1968) first introduced the term ‘ccology’, which is derived
from the Greek word ‘Oikos’ meaning dwelling place or house and ‘logy’ meaning
the study of.

Parts of Ecology:

The study of ecology consists of four parts : (i) individual (ii) population (iii)
community (iv) ecosystem. We describe them separately.
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(i) Individual : Tt deals with the study of growth, development, reproduction
and mortality of an individual.

(ii) Population : It deals with the study of the problems ol the different organisms
of the same single species. It studies whether a population will grow or decline, it
studies why some populations are stable over many generations while other show
outbreaks and crashes, it studies the causes of extinction,

(iii) Community ; Tl deals with populations of different species. The problems
to be studied are whether populations of different species co-exist 7 Do the details
of feeding relationship (who eats whom) matter ?

(iv) Ecosystem : Ecosystemn is the fundament unit of ccology. where both biotic
and abiotic components of the environment interplay. An ccosystem consists of several
factors which may be divided into two categories : abiotic and biotic,

Components ol Ecosystem:

Abiotic factors :
(i) Different organic and inorganic components : Calcium, sulpher, magnesium,
potassium, oxygen, nitrogen, carbon dioxide. water, soil, amino-acids ete.
(ii) Physical factors : Light, humidity, temperature, atmospheric .ressure. rainfall
etc.
(iii) Soil factor : Nature of soil, water holding capacity, percolation of water through
- soil ete.
(iv) Topographic factors : Altitude, undulating landscape, amount of light falling
on a place, wind blowing through etc.

Biotic factors:

(i) Producers : Green plants which produce proteins, amino acids, glucose efc. by
the process of photosynthesis in the presence of sun-light,

(ii) Consumers: _
(a) Primary consumers : Plant eaters - minute animals in the upper level of
water constitute zoo plankton e.g. paphia, protozoa. The primary consumers in
the lower level of water are called bottom forms e.g. orthopods, snails, small
fishes, ete. Primary consumers of land are harvivores e.g. grasshopper, rabbits,
monkey, dears, cows efc.

(b) Secondary consumers : Carnivores feeding on primary consumers such as
frogs, toads, spider etc.



(¢) Territory consumers : The animals feeding on the secondary consumers
are called territory consumers e.g. Tiger, Lion, Leopard, whale, hawk, eugle etc.
(iii) Decomposers : (also called microorganisms) Certain bacteria, fungi breakdown
the complex compounds of dead protoplasm, absorb certain decomposed

produced and release certain simple substance for further utilization by the
producers.

Different Types of Ecosystems :

(i) Aquatic Ecosystems : A pond is an example of an aqualic ecosystem. It
comprises of four components ; abiotic factors, producers, consumers and
decomposers,

(ii) Terrestrial Ecosystem : A forest is a typical example. It also comprises of four
components : abiotic substances, producers, consumers and decomposers,

1.2 O Ecological Systems : Mathematical Models

Much of the monograph is devoted to the formulation and analysis of mathematical
models. A mathematical model is a set of assumptions about an ccological system
expressed in mathematical language. Mathematical reasonings or computations may
then be used (o generate predictions about the system.

Definition : Dynamical Model
A dynamical model of a system is a mathematical statement of the rules governing
the changes of the states or conditions of the system with time. A dynamical model

may be deterministic or stochastic, A dynamical model may be discrete-time or a
continuous fime.

1.2.1 Deterministic Models and State varinﬁles

The simplest ecological models, called deterministic models, make assumption that
if we know the present conditions of a system, we can predict its future accurately.
To determine the current state or condition of the system we have to choose some
quantities called state variables. The choice of state variables involve a subtle balance
of biological realism and mathematical complexity. '

(i) State variables for individual are age, sex, development stage, physioldgium
variable such as weight or size. For many cases age and size (or weight) are
sufficient to serve as state variables.

(i) State variables for populations are the number of living organisms the population
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contains. A more general population is a structured population. Structured
populations are of two Lypes : (a) age-structured population which involves
both the number of individuals and their ages as state variables (b) spatially-
structured population which involves the number of individuals along with
their positions or locations at any time,

(i1i) State variables for a community (a group of populations of different species)
are the number of individuals of each dynamically interacting species.

(iv) In ccosystem the species are divided into some functional groups such as primary
producers, herbivores, carnivores having interaction among the groups, Workable
state variables to an ecosystem is a list of the biomasses of cach of the functional
group.

1.2.2a  Modelling in Discrete-time
Let the variable X, denotes the state of the system at time t. The sysiem state al tine
t+ At denoted by X, is a function of X, i.e,

X =HX,) (2.1)
The tunctional form of F depends on the system under consideration, Tf the function
F is explicitly independent of time t the equation (2.1) is called an autonomous
differcnce equation, The difference equation model forecasts the state of the system
at series of equally spaced times. For example, if we know the state at time = 0,
we can caleulate its state at times t = At, 2 At, 3 At ...; Al represents a single number,
say one second, one minule, one year elc. For non-autonomous systems the difference
equation is of the form

Xioar =F(X, 1) (2.2)

1.2.2.h Modelling in Conlinupus—time

Continuous—time models aim to predict the values of the state variables at all future
time, not at integer multiples of some time increment At, To write down the dynamics
of a system we require the rate of change of the state variable X. It can be written
in the form ol the non-autonomous differential equation

For autonomous system the rate of change of the state variable that is, the function
g does not depend explicitly on t. In this case the equation becomes
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dx
T g(X) (2.4)

1.2.3 Balance (or conservation) Equation

Changes in abundance, stock or concentration of any physical or biological entity
oceur only through the operation of an identifiable process..For example, the
concentration of physically and chemically stable material in an enclosed region can
only change because of the import or export across the boundaries of the region, T(
the system is reactive then we must add the possibility of chemical transformation.
Similarly, the population of organisms in an enclosed region can only change because
of reproduction, mortality, export and import of the population across the boundaries,
The dynamical equation which represents the changes in mathematical language is
called the conservation or balance equation.

{Ia} Balance Equation for Chemically Inert Substances

We consider a chemically non-reactive substance located within a region of space,
Let Q, represonts the quantity of the substance within the region at any time 1, Then
the balance eguation 18 given by

Qua=Q + inflow — outflow (2.5)
where the terms ‘inflow’ and ‘outflow’ represent the total inflow and outflow of the
material during the time interval (i, t+ At). The equation (2.5) is an example of
discrete-time balance equation. The analogue equation for continuous time is

dQu) _

. inflow rate — outflow rate (2.6)
L

(b) Balance Equation for Chemically reacting substances

In the above balance equations the stock changes because of transport into and oul
of the region of interest. Most ecologically interesting situations involye chemical
and biological transformation within the region being modeled. For example, the
balance equation for a chemically reacting system is

_.—dQ{l} = inflow rate — outflow rate + formation rate — transformation rate

dt
(2.7
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In conclusion, the deterministic models of ecological systems involves three steps :

(1} Choose the state variables appropriate (o the system under consideration,
(if) Derive the balance (or conservation) equations. The balance equations represent
the model equations for the growth process of the system under consideration,

(iii) For the successful utilization of the model equations we have to make model-
specific assumptions.

1.2.4 Randomness and Stochastic Models

In the deterministic models the state of a system at any future time can be predicted
exactly from its present state. This assumption is of course untenable. Unpredictability
or randomness enter ecological dynamics in two ways. First no environment outsice
the laboratory is truely predictable. For example, the average light intensity measured
each day at place vary randomly. Since light provides the energy for primary production
the dynamics of ecological system will be seriously affected by the variability. Similarly,
the random variation ol humidity, temperature and other factors for an ecosysten can
nol be correctly predicted by deterministic models.

A second important way in which randomness affects ecological dynamics is
that similar organisms do not necessarily respond in the same way fo a given
environment, Genetically identical individuals with identical histories in identical
environment exhibit considerable variability in the timing, amount of reproduction
and mortality. Although randomness is ubiquitous and stochastic models are essential,
deterministic models are appropriate starting point for many ecological systems and
are prerequisite to the formulation, analysis and better understanding of stochastic
models of complex systems under investigation. In this monograph we shall he
concerned mainly with the deterministic dynamical models of ‘ecological systems.

1.2.5. Summary

The chapter consists of two parts:
(i) The first part consists of a brief discussion of ecology and ecological systems,
(i) The second part is concerned with the dynamical modeling of ecological system.
It explains the concepts of state variables, continuous-time and discrete-time
madels of ecological systems The difference between deterministic and stochastic
models of ecological system has been explained.
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Unit 2 O Single-Species Population : Continuous-Time Models

Objectives: The object of this chapter is to present the basic biological and mathemati-
cal postulates necessary for the continuous-time models of single-species populations

together with their mathematical analysis.

Structure

2.1 Introduction : Basic Postulates

2.2  Population Growth : General Model Equation
2.3 Malthus Population Model: Exponential Growth
24  Logistic Population Growth

2.5 Allee Effect

2.6  Gompertz Population Growth

27 Models Equations : Qualitative Analysis

2.8 Harvest Models

2.9  Summary

2.1 0 Introduction : Basic Postulates

For the development of continuous-time models of population we assume the following
three biological and mathematical postulates :

(i) The postulate of Parenthood

This states that every living organism has arisen from at least one parent of like
kind to itself: 1t is often called *the principle of a biogenesis’. For any one who
believes in the initial terrestrial origin of life, the postulate is not universally valid;

but since under present condition spontancous gencration has never-been observed,
we can take it as true enough to use in our investigation,

(ii) The postulate of upper limit |

The second postulate is that in a finite space there is an upper limit to the

~number of living beings that can in some way occupy or.utilize the space under

consideration. The living beings require supply of energy at a certain rate to maintain
their stability; obviously the space can not contain more of su-:h living beings that
utilize the energy input in the space.
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(iii) The postulate of continuity

In addition to the above two biological postulates, it is convenient for
mathematical reasons initially to adopt the convention that the variation of a population
size x behaves as if x is a continuons variable, capable of taking any value, integral,
fractional between the possible upper and lower limits of the population. The
convention, though strictly untrue, is harmless when we are dealing with a sufficiently
large population not having definite breeding or dying seasons, in which reproduction
occurs at random among all members of the appropriate age class, and death occurs
according to some statistically defined pattern not varying with time. When definite
breeding seasons occur, or when mortality is much greater at sometimes of the year
thun at others, finite difference equations are to be used.

2.2 0 Population Growth : General Model Equation

Let x(t) denotes the population size (or density) at any time | and according to the
postulate .(iii) x(1) is assumed to be differentiable every where, that is, a smooth
function of time 1, The general model equation of growth of a single-species population
can be wrilten s

dx .
iy (2.1)
A (x)

where the growth rate oL depends only on the population size (or density). Such an
assumplion appears to be reasonable for simple organisms such as microorganisms.
For more complicated organisms like animals or humans this is an over simplification
as it ignores intra-specics competitions for resources and other factors, including age
structure (the morality rate may depend on age rather than on population size). IT the
function I is sufficiently smooth, we can expand il in Taylor's se;ies,

f{x}:E a x" =a_ +a, X+a, X7 Fag X +. (2.2)

n=o :
The postulate (i) requires flo) = 0 to dismiss the possibility of spontancous generation,
the production of living organisms from inanimate matter. This is equivalent to
dx

- dt

so that we may assume a, = 0 and then

=f(o)=0

A=t

dx 2 9
—=a; X+ay X~ +ag X+

di
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=x(a, +a,y X405 X2 +,.)

=xg{x} aaa {‘2«3‘}
i (1) . : ; =
The quantity l‘;_’:z x{{t}} is called the per capita growth rate i.e, the rate of growth
X x

per member. 1t is also known as intrinsic growth rate and the polynomial g(x) of (2.3)
is, therefore, the intrinsic growth rate of the population. We shall now study several
specitic growth models and study their characteristic behaviours.

2.3 O Malthus Population Model: Exponential Growth

We first look at a population in which all individuals develop independently of one
another. The organisms live in an unrestricted environment, where there is no form
of competition. The rate of change of populations size (or density) can be comptited
il the birth-rate, death-rate and migration rate arc keown. For a closed population
system there is no migration and the population size changes due to changes in births
and deaths. Let b be the per capita birth rate and d be the per capita death rate. Then
the change in population during a small time-internal (t, L + h) is given by

X1+ h) —x(t) =(b—d) x(tt h

of, W ~(b—d) x(t) h

Taking the limit h = (), we have,

ux

E={b—d;1x =1x | (2.4)

where r = (b-d) (2.5)
is the net growth (or reproduction) rate,

The equation (2.4) is the famous Malthus model equation of population growth,
This is the simplest form of the general model equation (2.3) with. coellicients of

£(x) as

8 =r,a; =a3 =....=0 : (2.6)
The equation (2.4) can be solved to give the exponential distribution
N(t) = Npe" (2.7)

where N = N(o), the initial population, For this reason, the population obeying the
equation (2.4) is said to be undergoing exponential growth. This constitutes the
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simplest minimal model ol bacterial growth or indeed growth of any reproductive
population. It was first initiated by Malthus in the year 1798 in human populations
in a treatise that caused sensation in the scientific community of the day, He (Malthus)
claimed that, barring natural disasters, the world’s population would grow exponentially
and thereby eventually outgrow its resources. He concluded that mass starvation
would befall huminity.

The equation (2.4), while very simple, turns up in a number of natural processes.
By reversing the sign of r one obtains a model of a population in which a fraction
r of the individuals is continually removed per unit time, such as by death or migration.
The equation

%:_M (2.8)
with solution N(t)= Nye™ (2.9)

describes a decaying process. This equation is commonly used to describe radicactive
decay.

One can define a population doubling time 1, (for r > 0) or half-life 1, (forr<0)
in the following way. For growing population, seek a time t; such that

Nes)
N

LY

Putting this in equation in (2.7), we obtain

N{t 1} = 2 =e|.-l
Ny
In2
or, In2=r145 017 5 =nT . (2.10)

The doubling time ¢, is thus inversely proportional to the reproductive constant r. In
a similar way we can find the half-life of a decaying population.

16



¥
i
L

Fig. 2.3a Fig. 2.3b

Malthus law for exponential growth Malthus law for exponential delay
Remark:

The model (2.4) is not accurate for all time. Populations that grow exponentially at
first are commonly observed in nature, However, their growth rates usually tend to
decrease as population size increases. In fact, exponential growth or decay may be
considered typical local behaviour. In other words, populations dynamics can usually
be approximated by this simple model only for a short period of time. The assumption
that the rate of growth of a population is proportional to its size (linear assumption)
is unrealistic on long time scales. In the next section we shall modify this model for
a realistic -population growth. Note that a population that grows exponentially to
infinity violates our basic postulates of finite upper limit.

Example (2.1): Confined Exponential Distribution

In order to prevent the infinitely large population size in Malthus exponential
growth model we veplace it by a confined exponential growth model equation as

dx

— = (x* =), xo)=x

dt :

where x* is the eqguilibrium value f x.

With initial condition x(0) = x, the solution of the equation is

X =x% — (x* = xp) el
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which is a confined exponential function. The confined exponential equation finds
wide applications in physical science, technology and alse in agriculture.

Example (2.2) : Time-dependent Growth Rate

In Malthus model equation (2.4) the growth rate r is assumed to be constant,
However, r may vary with time. For example, if we rake (t) = rue"“ where k is a
posilive constant, we get the equation

dx E,

e Jﬂ}i

dt :
which is known as Gompertz equation and is 10 be discussed independently later on.
If we put £(t) = [r, + r, Sin (wt +4§ )] that is, il we assume a simple harmonic growth
rate, we have the equation

dx :

E =[r, + 1, Sin{wt +§ )]x.

This type of eguation is uscful for the certain types of trees whose mass vary
periodically with a period of one year on the average.

24 0O Logistic Population Model

To correct prediction based on Malthus model or law (that a population grows
indefinitely at an exponential rate), we consider a non-constant intrinsic growth rate
g(x). The logistic model is perhaps the simplest extension of Malthus model equation
(2.4). For a faithful model of population growth, we take more terms in the series for
f(x). We take the intrinsic growth ratec as

g(x}=a1+azx=r(l—£) (2.11)
.E

where 8, =1 k= _[ﬂ_l] (2.12)
2

The growth equation (2.3) then becomes.

d_":”{l_ij : : (2.13)
dt k ’
which is the famous logistic model equation of population growth.
Carrying Capacity :
From cquation (2.13) we see that
dx _
dt

0 when x = k.
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Thus x = k is a steady-state or equilibrium state ol the logistic equation (2.13). We
also note that

E}U, for x<k /
dt (2.14)
ﬁq{}, for x>k
-t

The quantity k represents the carrying capacity of the environment of the species.

Example (2.3) : Solve the equation (2.13) i.c, the equation

dx X
—_ | —— |, %x(0)= {2[3}
0 rx[ k] () =x, :
To solve we write the equation (2,13) i the form
d =rdi

x[i - }(]
k
Rearrange the equation to show that the solution is given by

Xk

M - (2415)

The solution (2.15) shows that for t =, the population size approaches the
carrying capacity k. It is easy to show that when the initial population x, is very
small, the population initially appears to grow exponentially at a rate r.

Fig. (2.4} Logistic growth curve
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Intra-species Competition

The competition among the individuals of a species for limited food, habitat
and other resources compel an increase in the net population mortality under crowded
conditions, Such effects are prominent when there are frequent encounters between
individuals. The equation (2.13) can be written as

—=rx——x (2.16)

The second term depicts a mortality proportional to the rate of paired encounters. The
equation (2.13) is thus a modification of Malthus growth equation (2.4) by

taking a termi (the second term in the rhs of (2.16) ) representing intra-species
interaction which stops the exponential growth.

Behaviour near Equilibria

The logistic equation (2.13) has two equilibria, x* =0 and x* =k,
Near x* =0, x*/k is small compared to x so that

dx
MLy A
at (2.17)

For r = 0, small perturbation about x* =0 grows exponentially; the equilibrium
x* = 0 is unstable. Close to x* =k, we put y =x—k in equation (2.13) to give us

dx L i

For r > (), small perturbation about x* = k decay exponentially, the equilibrium x* =k
is asymptotically stable (for details see section 2.7). For positive r, solutions of the
logistic equation (2.13) are essentially a combination of exponential growth, close to
zero, and of exponential decay, close to the carrying capacity (sce Fig, 2.4),

2.5 O Allee Effect

A further extension of Malthus and logistic model equations’is an assumption of the
form
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s T 2
glx)=a; +a, x+dsx} (2.17)

with a; >0uand a; <0

When this condition is satisfied we obtain Allee effect, which represents a population
that has a maximal intrinsic growth rate at intermediate density. This effect may stem
from the difficulty of finding mate at very low density. The Fig. (2.5) below is an

example of density dependent form of g(x) that predicts the Allee effect, lis general

characteristic can be summarized by the inequalities
(x) =0, for x <1
g (x) 1 (2-18)
g (x)<0, for x > |

where | is the densily lor optimal reproduction,

Gir)
A

] X

Fig. (2.5) @ In the Allee effect the rate of reproduction is maximal at intermediate density

2.6 0 Gompertz Population Model

In the case of Malthus model the population grows exponentially and becomes
ridiculously large. The exponential model finally becomes meaningless, since really
the population never goes to infinity. In an attempt to construct a growth model more
realistically we device the following Gompertz model : We assume a growth
phenomena in which the growth coefficient is no longer constant, but vary with time
t. Thus, in the case of exponential growth, we commence with the differential eqguation
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dx _
s
where the growth coefficient r is assumed to change with time according to the
relation ;
dd_i. =—{r (2.20a)
where ¢ is a decaying coefficient of r and we assume ¢ > 0. With the initial condition
r(0) = 1y, the solution of (2.20a) is

rere (2.20b)
So the main feature of Gompertz growth model is the inclusion of an exponentially
decreasing growth coefficient, Substituting (2.20b) in (2.19), we have

X (2.19)

j—: =foe" ' (2.21)
The solution of (2.21) is
x(t)=x exp E‘L {l—e" l)} (2.22)

with initial condition x(o0) = X.
The equation (2.21) is the Gompertz equation and the function (2.22) is the Gompertz
function. From (2.22) we see that as t = oo,

x4 xE K, t:xpv[ :—"] . {2.23)

Substituting this value in (2.22), we have the alternative form of Gompertz function :

x(f)=x*exp [—%ﬂ"‘ '} (2.24)

The quantity x* is the value of x when  becomes very large, that is, it is the
asymptotic value of x. In this sense it is the carrying capacity. Aguin using (2.24) in
(2.21), we have the alternative form of Gompertz equation as

dx

X
— = — I — ;
& 1 x log = _ | (2.25)

We note that the specific growth rate l:li—}: is given by the difference of the logarithms
X

of x* and x. .
A comparison is made of exponential, logistic and Gompertz growth curves in the
Fig. (2.6) below.
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o

Fig. (2.6) : Compuarison of Exponential, logistic and Gompertz curves,

2.7 1 Model Equations : Qualitative Analysis

Having the dynamical equations for model system in our hand, our next problem is
to solve these equations, There are two approaches to it. First, we can attempt to find
out an analytical solution, that is, a formula relating the value ol the state variable
at i time t to its valoe al some initial time t = 0 (say). When analytical solution is
available, it provides a complete characterization of the dynamics of the given system.
However, except for the simplest models, analytical solutions appear to be impossible,
- In the other case, an explicit solution can be calculated numerically, A numerical
solution of differential equation is more Iricky than that of difference equation.
Numerical solutions are much less useful than analytical solutions, being valid only
for chosen values of the initial state and model parameters, However, they are very
easy lo compute, and for simple system it is possible to obtain considerable insight
by *numerical experiment’. For more complicated models numerical solution is
typically the approach available. Tn reality, vast majority of investigations proves that
it is impossible 0 obtain complete or near complete information about 4 dynamical
system, either by analytic solution or by numerical experiment. For this reason, over
the last century or so-mathematicians have developed methods or techniques of
determining the quaiitat'i ve properties of the solutions of the dynamical equations and
thus answering many questions of ecological interests, without explicitly solving the
model equations concerned.



Equilibrium Point:

We consider an autonomous first-order differential equation of the type
dx
==

in which the r.h.g does not contain time t explicitly, Sometimes for ecological systems

we write this equation in the form,

f(x) ‘ (2.26)

.'i_’t‘. gl 2.27)

where g(x) is the per capita growth rate or intrinsic growth rate,

Delinition |

The point x = x* is an equilibrinm point (or a fixed point or critical point

or rest point or steady-state point) of the model equation (2.26) if T (x*) = 0. If x(t)
is a solution of the differential equation (2.26) that tends to a limit as t = #, then it
15 not difficult to show that its limiting value must be equilibrium pont, In fact, for
a [irst-order dillerential equation every solution must either tend to an equilibrium
point as t = e or be unbounded. However, not every equilibrium is a limit of non-
constant solutions, For example, the only solution of the logistic equation that tends
to zero as t = = i5 the identically zero solution,

Linearization :

In order to describe the behaviour of solution near equilibrium we introduce the
process of linearization, If x* be'an cquilibrium point of the equation (2.26) so that
f (x*) = 0, we make the change of variable u(l) = x(1) — x* representing the deviation
of the solution from the equilibrium value. Putting this in equation (2.26) we have

£ (et

%:f(x*+u(t}]+f{x*}u{t] + 5

where x*<c<x* +ull).
d
Since f(x*)=0, wehave ?‘: = (x®)u(t) +h(u)

£ el (n)

where hiu)= >
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For u () very small we can neglect h(u) so that we have the linear equation,
49 _ o . (2.28)
dt .

The importance of linearization lies in the fact that the behaviour of its solution is

casy to analyse and this behavioyr also describes the behaviour of the solution of the

original equation (2.26) near equilibrium. We have, infact, the theorem :

Theorem 2.1 :

1f all solutions of the linearization (2.28) at equilibrinm x* tends to zero ag | = o,
then all solutions of (2.26) with the initial point x(o) sufficiently close to x*, tends
to the equilibrium point x* as t =2 =,

Stability ;

The process of linearization plays an important role in the study of the stability of
the equilibrium point or state. For this, let us first give a formal definition of stability.

Definition :
An equilibrium point x* is Lyapunov stable if for any arbitrary small € > 0, there
exists a § > 0 (depending on t ) such that, for all initial condition x(0) = x, satisfying
| x,—x*| <8, we have | x(t) - x* | < ¢ for all t >0, In other words, an eqguilibrium
point is stable if stating close (enough) to equilibrium guarantees that you will stay
close to equilibrium, An equilibrium point x* is asymptotically stable if it is stable
and if in addition | x; — x* | <@ implies limx(1) = x* :

g
Remark :
In biological applications, we will ordinarily require asymptotic stability rather than
stability. This is because asymptotic stability can be determined form the linearization,
while stability cannot and again this is because asymptotic stable equilibrium is not
disturbed greatly by a perturbation of the differential equation. In term of asymptotic
stability we may restate the theorem (2.1) as follows :

Theorem 2.2 3

An equilibrium point x* of (2.26) is asymptotically stable, if f(x*)<0 and unstable
if f(x#)=0. '
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Exercises

(1) Investigate the asymptotic stabihity of the equilibrium points of the following
model equations,

4 Sy x[l—i] [ Logistic model ]
dt k g

(i1) L -1 X log X [ Gompertz model ]
di | 2

i (e v

(111) E=m [Smith model|

(2) Show that il r < 0, k < 0, every solution of the logistic equation with x(o)=0
approaches zero as { = oo,

(3) A population is governed by the equation
dx
ey
Find all equilibria and determine their stability,

(4) Discuss the model

b

LE]

x(e?™ =1

where 0 < ko < k. Find all limits of solutions with x(0) > 0 as | = = and find
the set ol initial values corresponding (o each limil,

(5) Show that for every choice of the constant ¢, the [unction
k
=
I4ee

it

15 a solution of the logistic differential equation.
(6) Consider the logistic equation

d—tzr{t}[l -%} x(0)=x,

d
with lime—dependent intrinsic growth rate r(t). Show that the solution is given by
kx
x(th= e
—jr[ajds

X +l;k-x0}c, o
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2.8 03 iiurvesl Models :

We wish to study the effect on a population model of the removal of mumhn:r_s of the
population at a specified rate, If a population modeled by the differential equation

dx _ F(x) (2.29)
dt
is subjected to a harvest at a rate h(t) member per unit time for some given function

h(1), then the harvested population is modeled by the differential equation,

. :
_’: — f(x) —h(t) (2.30)

d
If the numbers are removed at a constant rate H (constant) per unit time, then the
model equation is

dx

dt .
Such type of harvesting is called constant rate or constant yield harvesting. Tt arises
when a quota is specified (for example, through permit as in deer hunting seasons in
muny states or by agreement as sometimes in whaling), 1 the population is governed
by logistic equation, then the harvest model equation is,

= f(x)—H (2.31)

L x(l_l)_n (2.32)
dt k
The equilibrium points are given by
r x[i—i)—ll =0or x? —kx +E =0
r

G e 1{]{— k? —4Hk}nnd %o =-|--{k +-,||k! —ﬁ} (2.33)
2 r ) r

k rk ; :
z0urh ﬂ%if H ::-: hoth roots are complex, x’ (1) < 0 for all x,

et 4
provided k* - =
I

and every solution crashes, hitting zero in finite time. If a sulutqu reaches zero in
finite time, we consider system to have collapsed. If ﬂiH-r.:I_—, there are twao
equilibria : X which increases from 0 to k2 as H increases ll'mnti'} to rk/H and X
which decreases from k to k/2 as H increases. The stability of an equilibrinm x* of
x = F(x) — H requires Fl(x™) < 0, which for logistic model means x* > k/2. Thus X,
is always unstable and x, is always asymptotically stable, When H increases to the
critical value H, = tk/4, there is a discontinuity in the behaviour of the system - the
two equilibria coalesce and annihilate each other. For H < H,, the population size
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tends to an equilibrium size that approaches k/2 as H = H_ (provided the initial
population size is at least x|), but for H > H, the population size reaches zero in
finite time for all initial populations sizes (see Fig, (2.84) below). Such a discontinuity
is called a (mathematical) Catastrope; the biological implications are catastropic to
species being modeled.

For a general model x” = f(x) — H equilibria are given by f(x) — H = 0, that is,
by finding values x* of x [or which the growth curve y = f(x) and the harvest curve
y = H (a horizontal line) intersect. An equilibrivm x* is asymplotically stable if
(F(x)=H)|,_.. =F"(x*) <0, that is, if at such an intersection the growth curve crosses
the haryest curve from above to below as x in increases (sec fig. (2.8b)), From fig
(2.8b) it is clear that if H > max’ f(x) there is no equilibriuvm, and the critical harvest
rate H, al which two equilibria coalesce and disappear is max f(x).

There are other models of harvesting for example, the harvest rate h(t) may be
i linear function of pupul.itmn size : h(t) = Ex and in that case it is known as constant

effort harvesting. Hurvesting plays an important role ia fishery and forestry and has
economic and commercial importances.

2.9 O Summary

(i) We have first stated basic biological and mathematical postulates necessary for
the development for the continuous-time models of populations,

(i1) We have set up a general model equation for single-species populations. We have
studicd some basic single-species population growth models, namely Malthus
growth model Logistic growth model, Allee effect, Gompertz growth model and
Harvest model ete.

(1ii) For the qualitative analysis of the model equations we have discussed a antono-
mous first order differential cquations, its equilirium (or fixed) points and criteria

of local stability of equilibrivm points.

(iv) As illustrative examples, we have discussed some problems related to the model
equations,
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K/,

H<H, H>H,
Fig. (2.84) Fig. (2.8b)
;s
y=f(x)
¥

FIGURE : 2.8b Intersections of the growth curve with the line of constant yield
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Unit 3 0 Single-Species Population Discrete-Time Models

Objectives: The object of this chapter is to develop discrete-time models of
populations growth on the basis of difference equations.

Stucture

3.1 Introduction

3.2 Lincar Non-homogencous Difference Equation

3.3 Differential Vs Difference Equations

3.4  Fixed Point and Stability

3.5 Graphical Solution ol Diflerence Equations

3.6  Density - Independent Growth

3.7 Steady-state and Criteria of Stability

3.8  Second-order Difference Equation and Application
3.9 Rabbit Problem : Fibonacci Sequence

3.10 Summary

3.1 O Introduction

For many organisms, births occur in regular, well-defined ‘breeding scasons’. This
contradicts our earlier assumption that birth occurs continuously. In this chapter we
shall consider populations with a fixed interval between generations or possibly a
lixed interval between measurement. Thus, we shall describe population size by a
sequence {x, }, with x; denoting the initial population size (at initial time tg), X, the
population size al the next generation (at time t, ), X, the population size al the second
generation (at time t,) and so on. The underlying assumption will always be that
population size at cach stage is determined by the popuiation sizes in past gencrations,
but that intermediate population sizes between generations are not needed. Usually
the time interval between generations 1s taken to be a constant.

For example, suppose the population changes only through births and deaths,
so that

Kyey —Xp =(b—d)x, (3.1)
where bxn is the number of births and dxy, is the number of deaths in the time-interyal

s B £l )i band d (assumed constanls) are the birth and death rates vespectively. From
(3.1) we thus have

Xpp = (1 Hb—d)x, =R, X(8,) =X, (3.2)
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which is a first-order linear homogeneous difference equation. The growth rate
r=1+b—dis a parameter of the equation. In general, we can write a first-order
difference equation as

X4 =Fx, ), with x(t, ) =x, (3.3)
In such an equation the new value of x is determined Eﬂlllplct{}]}-’ by the previous
value, In higher-order difference equation we would require information about several
previous values to determine the current value. For example, the Kepler recursion relation

Rnpl = X F 5 (3.4)

15 a second-order difference equation as it requires lwo previous values xp and x|
to find out the exact value of x_,,. Such type of difference equation appears in the
case of over lapping generations as in the case of Snow Geese in Buffin Island. The
function f in (3.3) is called a map or iteration. A map { is linear if f is of the form
fix) = ax, for some constant a Otherwise the equation (3.3) is non-linear
(or density — dependent in biology).

Example (3.1) : Logistic Difference Equation
Let xu be the size of a population of a certain species at time t. Let r be the rate of
growth ol population from generation to generation. Then from (3.2) we have
- F>0 (3.2)
with initial population x(to) = xp.
Then by simple iteration we find that

R e (3.5)
i5 the solution of (3.2). If v > |, the population increases without any bound to
mhnity. Il r= 1, x5 = %, the population stays constant forever. If r<1,lim %, =1, lhe

N+

?‘I'I-II: =Ix

populations eventually becomes extinct.

We observe that for most species the above model is not realistic, the population
increases until it reaches a threshold, Then limited resources would force the members
of the species W Iight and compete with others. This competition is proportional to
the number of squabbles 42 among them. A more realistic model is, therefore,

Xps =N, — by § (3.6)

where b is the proportionality constant of interaction among the members of the
: . b
species. Writing ¥ =?x", we hvae

¥n=i :r}rnfl—}rn} . {3‘?:‘
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The equation (3.7) is the discrete logistic equation and the map Ky) = ry(l — y) is
called the logistic map. It is a reasonably good model in which generations do not
overlap, The logistic equation (3.7) is very important, by varying the value of the
parameter r, this simple and innocent looking equation exhibits somewhat complex behaviours,

3.2 O Linear Non-homogeneous Difference iﬂqua’lian

Consider the first-order linear non-homogeneous difference equation
Xpp =8 X, +b, x(t,) =% o (3.8)
The equation can be solved by successive iterations,
xp=ax,+b
Xy =ax; t+b
=afax, b)+b =:13:t“ +ab +b
By induction, we can show that
Xy =ax, +b=a(a’x, +ab +b) +b
=a’x, +a’b+ab+b
By induction,we can show that

=
X, =a"%, + Y a" b
j=n
=a" gl A=) ey
=atx, 4 = ,ifn # (3.9)

The above formula (3.9) is an important result having many applications. As an
application let us consider the following problem.

Example (3.2) :

A drug is administered every six hours. Let D(n) be the amount of the
drug in the blood system at the nth interval. The body eliminates a certain fraction
p of the drug during each time interval. If the initial blood administered is D, find

D(n) and ,!im Din).

Solution :

The first step is to write down the difference equation that relates the amount of drug
in the patient blood system D(n+1) at the time interval (n + 1) with D(n). The
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resulling equation is
D(n)=(1-p) D(n)+D,,
Using the formula (3.9). We have

D(n)=(1-p)"D, +D{#]

D
:1:[]@"‘&}!_?}“"' cith
P P

; D
Thus lim D(n)= ?”

3.3 O Ditferential Vs Difference Equation

Consider the differential equation

dx
e g(x(t)), x(t,) =X, v (3.10)
For many differential equations such as (3.10), it may not be possible to find a
‘closed form” of solution, In that case, we resort to numerical method to approximate
the solution of (3.10). In Euler algorithm, for example, we start with a discrete set
of points (t,t, ..t,) with h = t ., -t  as the step size. Then for 1, <t <t ,, we
upproximate x(t) by x(t ) and dx/dt by

d_x _ X(ta+1)—x(tn)

dt h
The equation (3.10) then leads to the equation

x{t“-q-]_} - x(ln] +h E(K{lﬂ] }
or in simple form

X,a1 =X, +hg(x,) _ R 2

where x, = x(t,,)
The equation (3.11) is of the form (3.3) with

f(x)=x+hg(x) g A3.12)
Given initial data  x(t;) = x5, we may use the equation (3.11) to genecrate the values

x(ty), %(ty)..... (1, ). These values approximate the solution of the differential equation
(3.10) at the grid points t;,1,........t, provided that h is sufficiently small.
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34_ [ Fixed (or Equilibrium) Point and Stability

When the map f is lincar it is possible to obtain ‘closed form® of solution of the first-
order difference equation (3.3). However, the situation changes drastically when the
map f is non-linear. Since we can not solve all the non-linear difference equations,
it is important to develop qualitative or graphical method of finding the behaviour of
the solutions. OF particular importance is the finding the fixed points or eqguilibrium
points or steady-states.

Definition : A point x* is said to be a fixed point or an equilibrivm poinl of the
differcnce equation x,,, = f(x ) if f (x*) =x*,

One ol the objectives in the theory of dynanucal system 15 the stwdy of the
hc_havimu' of the system, that 13, the behaviour of solutions of a difference equation
near the fixed or equilibrium point, Such a program of investigation is called stability
theory. Let us now explain the concept of stability of a fixed point.

Definition : T.et x* be a fixed (or equilibrium) point of the difference equation

Ko =F0x,), xt, ) =%,

Then
(i) x*is said (o be stable if for any ¢ > 0 there exists § > 0 such that | x,—x* [ =i
implies | x, — x* | < ¢ for all positive integers n and for all x in the domain
of definition. Otherwise the point x* will be unstable.

(if) x* is said to be attracting if there exists | = 0 such that | x5 - x* | < implics

limx, =x
(iii) x* is asymptotically stable (sometimes called a sink) if it is both stable and
attractive, Tf in (i) = o, then x* is said to be globally asymptotic stuble.
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Fig. 3.1 : Stable fixed point 2*
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Fig. 3.2 : Unstable fixed poinl
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Fig. 3.3 : Attractive, but vnstable fixed point x
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Fig. 3.4 : Asymptotically stable fixed puint x
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3.5 0 Graphical Solution of Difference Equation

In example (3.2) we have explained the method of solving a first-order linear difference
equation. Let us now describe a graphical method of solving difference equation of
the form x,,, = f(x,) by a graphical method; called “Cobweb diagram”. It is also one
of the effective graphical iteration methods to determine the stability of fixed point.

Cobweb Diagram :

We start with an initial point Xo. Then we move vertically until we hit the graph
y = 1 (x} at the point (xg, T (xy) ). We then travel horizontally to meet the line
y = x at the point (f (x,), T (xy) ). This determines f (xg) = x| on the x-axis. To
find out the next iterated value Xo =T (x)) =L (E(x,)) = l'z{xu}_, we move again
vertically until we strike the graph y = f(x) at the point (f (X l'z{x“)); and then move
horizontally to meet the line y =x at the point {fz{-x“}, fz(xu} ). This determincs
Xy = fz[xu} on the x-axis. Proceeding in this way, we can evaluate all of the iterated
values {x;, x,....X,...]. Let us explain this method with a simple example and show
how it can be used to test the stability of a fixed point. Note that fixed point is the
point of intersection of the curve y = f{x) and the line y = x.

N,

Fig.: 3.5 Geometric growth,
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3.6 1 Density = Independent Growth

Let N, be the size of the population in year (or generation) t. We will census the
population each year at the sume stage of the life cycle, Imagine that each individual
leaves Ro offsprings before dying., We shall call Ro the net reproductive rate. It
fallows that

N, =R,N, (3.13)

The equation (3.13) is linear, first-order, constant - coefficient difference eguation.
The solution is given by (see 3.5)

N, =R's N, (3.14)

The solution is thus one of geometric growth or decay. If Ro > |, each individual
leaves more than one descendant, and the population grows geometically (see Fig,
3.5).

If {}c:R <1 the individuals leave, on average, fewer than one descendant, and the
|}upuml:nru declines peometrically (see Fig. 3.6). These figures resemble those for
exponcntial growth and decay. Individuals cannot leave a negative number of offspring,
However, nothing can prevenl us [rom pondering this possibility mathematically.
For—1 <R, <0, we gel decaying oscillations (Fig. 3.7). For R, <-I, we get growing
oscillation (Fig. 3.8). Figures (3.5) to (3.8) suggest that the solutions approach the
origin if Ro is less than'| in magnitude and that these solution diverge if Ro is greater
than | in magnitude.

Let us now use the method of cobweb diagram to plot the solntion of the
equation (3.13). Fig. (3.9) shows N, plotted as a function of N, for R, >1. The
curve is clearly a straight line. The Fig, (3.9) also contain the 45° dashed line,
N,,; =N,. We may iterate our difference equation by repeatedly (a) moving up (or
down) (o the curve and then (b) bounching off the 45 line (so that we reset N, =N, ).
This approach will be of extremely helpful late in our analysis of non-linear difference
equation. Zero is a fixed (or equilibrium) point of the equation (3.13). The trivial
equilibrium N, = 0 is unstable in Fig. (3.9) where R, > and stable in Fig, (3.10)
where 0<R_<1; in the former case the iterated values moves away from the
equilibrium point N =0 and in the later case the iterated values approaches the
equilibrium point N, = 0, .

A lineat, density-independent difference equation may have a non-zero
equilibrium if we allow for immigration or emigration, For example, the difference
equation

N :% N, +10 sl (3.15)

38



has an ‘equilibrium N* = 40, .
We now introduce a new variable x, =N, —40

. 3
Then the equation (3.15) becomes X4 =X

4
3 I
So that %, =xn(1)

L
gt N, =40+(N, —40}[%] (3.16)

The small perturbation about the equilibrium decay; the equilibrium is asymptotically
stable. This stability also comes out in Cobweb analysis [see Fig.(3.9) (3.12)].

N,

5 =t

[B¥]

Fig. : 1.6 Geomelric decay,
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3.7 0 Steady-state : Criteria of Stability

The stability is of fundamental importance in biology. When a steady-state (or-an
equilibrinm state) is unstable, great changes may about to happen @ a population may
crash, homeostasis may be disrupted or else the balance in number of competing
groups may shift in favour of a few. Thus, even if an exact analytical solution is not
easy to come by, qualitative information about whether change is imminent is of
potential importance.

Let us now find out the criteria of stability of a fixed equilibrium point or a
steady-state. We consider the non-linear first-order difference equation of the
lorm (3.3) ¢

Lnel = f{xn] [ {316]
where the [unction f is a non-linear function of its argument (I may be quadratic,
exponential reciprocal, powers of X elc.) Lel x* be the lixed point of the equation
(3.16), We are interested in the stability of the fixed point x*. There are general
criteria of stability for different types of fixed points. We shall, however, consider the
condition of local stability in the neighbourhood of the fixed point x*, Let us write

Xy =X T kXl : w o (3.17)
where x'| is a small quantity termed a perturbation of the steady state x™. Let us
linearise the equation (3.16) about the steady state x*

X =X F4X 4 = Hx*+x])

= F(x*) + x 7 F(x*) 4+ O(x. %)

= x40 (%) +0(x.2)

Neglecting higher-order term g(x_'?), we have
e 1o = (3.148)
L 3.19

where ik (3.19)
Thus, the non-linear equation (3.16) has been reduced to the linear equation (3.18)
that describes what happens close (o the steady-state x*. The solution of the equation
(3.18) is decreasing and tends to the fixed point x* wherever | a | < L.

So we have the condition of stability :
The fixed point or steady-state x* is asymptotically stable if and only if

| Frix*) < (3.20)
Note that whenever | £'(x*) | = 1, then (x4, —x) implying a constant deviation is
unable to decreasex’  to reach the fixed point, More formally, we have the theorem.
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Theorem :

Let x* be a fixed point of the difference equation (3.16). Suppose that f(x) is
continuously differentiable and | ' (x*)|#1. Then, the fixed point x* is asymptotically
stable if[f'(x*}|<1 and unstable if!f'{x“‘}|:=~1.

Example (3.3) :
The growth of a population satisfies the following difference equation
kx,
b+x,

Lnel & ' b'k = U’

Find the steady-state (if any). If so, is that stable ?

Solution : Let x* be the steady-state value of x .

Then x¥=x =X,
&
So that x¥ = i3 , or x*=0k-b
b+x*

The steady-state makes sense only il x*>0ie.,if k> b, since negative population is
biologically meaningless, To study the stability, we consider the equation

¢
n

ol
i dx\b+x

So the steady-state x* = k — b is stuble if

’ Ty
Kpp| =22

df
4 ==
dx

x*=k-h

where

b
k

k
condition of stability reduces to k > b, The study of stability of x* =0 is left as an
EXETCISC,

<. Since both k and b are positive, the

Excercise :
(1) Find the non-negative equilibrium of a population governed by
Appl = _’;’x_ﬁ
iy 2
and check the stability.
(2) A population is governed by the equation
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L |
L

show that all equilibria are unstable.

Example (3.4) :

Logistic Difference Equation Revisited
Consider the following equation
Ky =rx,(0-x_)

Investigate the stability of the steady-state.

Solution : Let x* be the steady-state value of x. Then

Then *=rx*(l-x%
l
So that X =0, Xp¥=1——.
r
Perturbation about x® satislies.
Xpe = 8X,
df
where a=— =r(1-2x|¢ 1=2-1
dx i8 3z= :

l : ;
Thus, Jig‘“=1—; 15 stable whenever |a| <1 which implies|2-r|<lorl <r <3, Then
the stability of the steady-state x*=l—; 1s conditioned on a parameter r. If r is

LA e ! * |
greater or small than certain critical values (here 3 and 1) the sleady-state X; =1-~
r

1 not stable, Such critical parameter values, often called bifurcation values: are
pomnts of demarcation for abrupt behaviour of the equation of the system il models.
There may be multitude of such transilions, so that us imcreasing values of the
parameter are used, one encounters different behaviours. In tact, if we increase the
vilue of r beyond 3 the equation will exhibit the complex behaviour of period
doubling and chaos, This is, however, beyond our discussion,

Example (3.5) :
Density-Dependent Growth

An assumption that growth rate depends on the density of the population leads
us to consider models of the following form
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Ny = f(Ny)
where £ (N)) is some non- linear function of the population density. Quite often,
single-species populations (insects, for example) are described by such equation. We
consider the following model.
Let the single-species population satisfies the equation

i v
Ny = [II_J N: J

where | is the reprodugtive rate, assumed to be greater than |. The equation 1s best
understood in the form

i b
Ny =[ﬂ Nth](" Nl}
|
‘ _— Noof progeny ul generation 1.

L Fraction that survive to generation (t+1).

where o . b, | = 0. Since the [raction of survivors can fiot exceed |, we see that the
pupu!almn must exceed a cerlain size N_ for this model to be biologically applmah]u
The steady-state population size is given by

1
N* = o pREEdT o N :[]'_)h
f It

We write f(N)= [ JN' " then -—‘ =1-b so the stability of the steady-state

I
N*:[l )h requires | 1-b|<lorD<b <2.
[

We note that b = 0 is & situation in which the survivorship is nol density dependent;

. ) : o
then the population grows at the rate [u_] Thus, lower-bound for stabilizing values

of b makes sensc,

Excercise :
(3) : Investigate the stability of the steady-state of the model ‘equation
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s onl(-3)

(4) : Consider the tent map f :

£x) 2xfordsx sl
S50 = ) for e <1
Write down the difference equation corresponding to the map [ defined above. Find

out the fixed points, draw the Cobweb diagram and investigate the stability,
The fixed points are obtained by the equations

Rx=y and 2l —x) =x
50 the lixed points are

2

H*Izﬂ and K*zz—

We observe from the Cobweb diagram (Fig. 3.12) that both the fixed points are
unstable,

B . ek, <l

Fig.: 3.7 Decay oscillations.
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3.8 0 Second-Order Difference Equation and Application

Let us now consider a second-order difference equation of the form

Xae1 = Fxy, Xp—1) (3,200
where the function f is now a function of two immediate preceding values x, and
X,.y- The function f may be linear or non-linear. We shall, however, be confined to

linear functions only. For simplicity, we shall consider a linear, homogeneous second-
order difference equation of the form :

Ay Koap +8) X, F0 %, =0 (3.21)
To solve the equation (3.21) let us take a solution of the form : x =ci®, Putting this
vilue in equation (3.21), we have,

al®+al +a,=0 (3.22)
which is known as the characteristic equation of the equation (3.21). The general
solution of the equation (3.21) is a linear superposition of the basic solutions of the
equation. Let )l | and 1 , be the two solutions of the characteristic equation i.e. the two
eigenvalues. Then the generals solution of the difference equation is given by

xn =.|ét|h lll +ﬂ21 1n . Ty {3-23}

where A and A, are two constants to be determined from two initial values of x.
If the eigenvalues | | and ) 5 are complex conjugates, we can transform the solution
in polar-coordinates. Let h , } 5 =a% i b and write a = r cos §, b = r sin . So that

-1 b
r® =@ b4, 4= tan I;'

Then  a+ib=r(cos) +sin )=re”.
a+ib=r(cosy —sim )=re'.
So the general solution is
A, =A(a+ib)" +A,(a — )" (3.24)
=A 1" (cosn) +ising )+A; r"(cosg —iSinp )
=B, r" cosn{ +iB, r" Sinnj

where By and B, are two constants
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3.9 Rabbit Problem : Fibonacci Sequence

Let us consider the linear second-order hmui;genenus :]iﬂ"ereume equation
Ropg = X TX— = (3.25)
which stems [rom Fibonacei work and the sequence (X ] i5 known as Fibonacci
sequence. Lef us pul x, =cl" in (3.25) to have the characteristic equation
124 41 (3.26)
-5 1+4/5 |

s0 that the eigenvalues are l,=T. ) =

The general solution of the

equation (3.25) is then given by
11

Suppose we start write x =0, x, =1 (initial condition).

SU. Dz.la-l JI- |u +J&.21 29 =hl +Jﬁ|.z
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I=A )l +Aj 5 =ﬁ|[l_£]+ﬁz[l—+-‘ﬁ]

z i
: ! 1
These zive A e A, ==
= 5N 1 1405Y

Then the general solution is x, =—%[%) +-E[ +;r—] v 632

We observe that 1 ,>1, —-14 , <0
Ny ; ! I +4/5 : :

Thus the dominant eigenvalue is | ;= 5 and ils magnitude guarantees that the

Fibonacci numbers {x, } form an increasing sequence. Since the eigenvalue | | 1S
negative, but of magnitude smaller than 1, its only effect s to superimpose 4 slight
oscillation that dies out as n increases. It can be concluded that for large n the effect
of | | is negligible, so that

|
x = —15
n 'J,lg 2
So the ratio of the successive Fibonacel numbers Knriry, Converges Lo
e 1+5
X ‘ 2 :
This limiting value known as Golden mean is, therefore, given by

1445

=1.618033... . (3.28)

"
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3
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|

Fig. £ 3.9 Geomefric graw th i I cabw e,

47



el <l #

[E¥]
I
\

N, N, N,
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Historical Notes :

In 1202 Leonardo of Pisa (1175 — 1250), an Italian mathematician more affectionately
known as Fibonacei (son of good nature), proposed the following problem (known
as Rabbit Problem) : “Suppose that every pair of rahbits can produce only twice,
when they are one and two months old and each time they produce exactly one new
pair of rabbits. Assume that all rabbits survive. How many pairs will there be after
n generation 7" The solution of this problem is a sequence of numbers (0. 1, 1, 2,
3,5, 8, 13,21 ....) — called the Fibonacei sequence. It was Kepler (1571 - 1630) who
first observed that the successive elements of Fibonacci sequence satisfies the recursion
or difference equation (3.25), He also noted that theratio 2 1,3: 2, 5:3, 8:5........
approach the value 1 = 1.618033 ..., (he Golden mean. The manifestation of Golden
mean and Fibonacei sequence appeared in Greek architecture, and in different biological
forms, The regular arrangement of leaves or plant parts along the stem, apex or
flower of a plant known as Phyllotaxis, captures the Fibonacci numbers, A striking
example is the arrangement of seeds on a npening sunflower. Biologists have not yet
agreed conclusively on what causes these geometrical designs and patterns in plants,
although the subject has been persued for over three centuries.
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3.10 Summary

In this chapter we have discussed discrete-time models of populations on the basis of
difference equations, The following are the problems discussed, (i) We have first
discussed first-order linear difference equation with applications. (ii) We have next
discussed the gualitative behaviors such as the stability of equilibrium (or fixed) points
of first-order non-linear difference equations, (iii) We have then discussed the method
of numerical and graphical solution namely Cobweb diagram method of finding the
solution, determination of equilibrium points and their stabilities; (iv) We have next
discussed second order linear difference equations and its application in the overlapping
population growth, in particular ,in the study of Rabbit problem and Fibonacci sequence,

Exereise : A population obeys the following growth equation
Lpe2 _zxnﬂ +2x, =0

Find the population in generation n. Find the steady-state (if it exists). If so, is thal
stable?

M.

L}

l[}ﬂ—l o

&0 — :

60 —

40 —

N,
0 I I | I |
0 20 40 ol R 1] LO0

Fig. 1 3.11 Cobwebbing to 4 stable equilibrivm,
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Unit 4 0 Delay Population Models

Ohbjectives: The object of this chapter is to discuss delay differential equation model of
population to take effect of time delay or time lag in the population growth,

Structure

4.1 Introduction

4.2  Types of Delay-Equations
43  Discrete-Time Delay Models
44  Distributed Delay Models
4.5 Summary

4.1 U Introduction

So far we have assumed (hat the rate al which a population is growing al time 1
depends on the magnitude of the population size (or density) at thal same time. For
example, consider the Malthus (or exponential) growth equation

d '
3D =mx(t),  x(o)=x, (4.1)

MNow what happens if we know that the present growth rate depends, not on the
present magnilude but on the magnitude at an earlier ime? For example, the present
cgrowth rate of a colony of [Mes depends not on the number of Iies right now but
rauther on the number of fhes laying a certain number of eggs 4 week or so ago. In
that case we wrile

dx(t)
dt

where 1, the average incubation period of the eggs, 15 a time delay or lime lag, As
we shall see, this almost trivial change in the differential equation, greatly complicate
the analysis and can produce drastic changes in the linal answer.

=rx(t—1) (4.2)

4.2 U Types of b;:luy_qulu_tii;ns

There are two types of delay equations ; (a) discrete-lime delay eguation and (b)
distributed time delay equations. : '

(a) Discrete-time delay equation -
A meore gencralized delay equation for Malthus growih is

ol



dx(t)
dt
where 1, and r, are constants. This 1s an example of differential - difference equations.
Another important discrete-time delay equation is the logistic delay equation

dn{l] X(t=1)
dt “}[ x* )

where x* is the carrying capacity.

= rX(t) + rx(t=1) (4.3)

(b) Distributed-time delay equation :

For distributed (or continuous) time delay, the logistic equation

dx(t) _ U:{ K{UJ _ :
dt X
becomes
i
dx(t) _ 1 - '
0 _ “;?.[K“_””E )d .. (46)

which is an example of integro-differential equation, the function K(t - x) is the delay
function,

4.3 1 Discrete-time Delay Models

Consider a model equation of the form

dx(t

S =1 gixe-1) . @
An equilibrium point of the equation (4.7) is a value x* such that x* g (x*) = 0) so
that x(t) = x* is a constant solution of the ditferential-difference equation (4.7). The

delay logistic equation (4.4) has two equilibrium points x = 0 and x = x*.

Linearization about an Equilibrium Point:
Let us write u(l) = x(1) - »*,. Putting this in equation (4.7) and using Taylor serics
expansion, we have,

dZ{II} (x *ult) ) gl{x™ +ult ~ 1)
= (X +(0) {g(X") + g0 u(t = 1) + g;; 2(t-1))
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=x ™ g(x*) +g(x*) u(t) +x = g'(x*) u(t 1) +h(u(t), u(t <))
= g(x*) u(t)+xF g (x*) ult —1) +h (u(t), u(t <))
where ¢ lies between x% and x*+u(t—1) and h{u(t), u(t—1) =g (x*) ut) u(t = ) +

x*g—muzu—u is o small gquantiy when u(s) is small for t—1 <s<t. So the

differential-difference equation (4.7) reduces o the linear form
du(t)
dt
abtained by neglecting the light order terms collected in h(u(t), u(t—1) ). We have
then the theorem :

=g(x*)u(t) +x* g (xH)u(t —1) o 14.8)

Theorem 4.1; If all the solutions of the linear equation
duit)
dt
tends to zero as £ —= = then every solution x(1) of the equation (4.7) with | x(1)-x* |
sufficiently small tends to the equilibrium point x* as { = o,

=gx®)u(t)+x* g (x*)ut—1) (4.9)

Asymptotic Stability :
For the differential equation
dx(1) = thx} l:'q-g}
ot
which is the cuse 1 =0 ol the equation (4.7) an equilibrium point x* is asymptotically
stable if and only il

:—xtxg(xj} =(xg(x))] _ =x*g(x") +g(x*) <0 ... (4.10)

So the equilibrium point x* = 0 15 asymptotically stable if g(0) < () and an eguilibrium
point x* > 0 is asymptotically stable if g'(x*) < 0, since g(x*) = 0. The study of
asymptotic stability of the fixed point x* of the differential difference equation (4.7)
15 a hit difficult, Tt requires the condition

(xg(x))], . <0 : D D

This is, however, not sufficient for the delay equation (4.7). For this. another condition
is required and this condition is provided by the theorem of linearization ;

(a) For equilibrium point x* = (), the lincarization is u'(t) = g(o) u(t). Since

(o) = 0 for most models of this type, the equilibrium point x* = 0 is unstable, since
u(t) increases with time L
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(b) For equilibrium point x* > 0, g(x*) = 0 and the linearization is

%}.zbu(t—ﬂ 4.13)
dt

where b =x* g ' (%), In order to determine whether all solutions of the linear differential
difference equation (4.13) tends to zero as t = = we take a solution of the form

uit)y=Ce't, (C is a constant) e (4:14)
Putting this value in {4.13) we have,
L= be® e (415)

This is a transcendental equation for 1 having infinitely many roots, A basic resull,
which we assume without prool] is that il all roots of the characlerislic equation
(4.15) have negative real parts, then all solutions of the differential - difference
cquation (<. 13) tends to zero on 1= =0, This result is analogous to the corresponding
result for differential equation. However; it is very difficull to analyse transcendental
equation (4.15) in the delay case. In the delay case, with 1 = 0, 11 15 possible to show
that the condition that all roots of the characteristic equation (4.15) have negative real
parts i

0-< —by {HE v (416)

The condition (4.16) implies b < 0 and in addition, that the time lag T not to be too
large. Combining the analysis with the above theorem we see that an equilibrium
point x* = 0 of the differential - difference equation

%: x(thg (x(t—1)) s AT
i5 asymptotically stable if
Je—x®gx®h {5/2 (4.18)

‘Example (4.1) : For delay—logistic equation

dx(t) o rx{r}{l _X(1t—1 })

dt 3 i

the stability condition (4.18) becomes.

<rt {I/E

Thus in addition to the stability condition. (xg(x))'|, _,. <0 for ordinury differential

equation, we must have additional requirement that the delay time 1 be sufficiently
small.
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Example (4.2) : Show that the equilibrium point x = K of the delay equation

dnit) =rx(t) lug[—x——]
dt

x(1—1

is asymplotically stable if 0<rr <1/,

4.4 1 Distributed Delay Models :

In the previous section we have studied the discrete-time delay model of the type

dx(t
B 0 g xa-1)
dt
This model equation can be generalized to the form
S =) [ etxti-9) pe)ds st R

L4 L
describing u distributed delay. Here p(s) ds represents the probability of a delay
between s and s + ds, so that

]p[sjds: | - A2
The ;1:e1';1gc delay 15 then, by definition
' T=]a p(s)ds o (42D
I_'J:::fiﬂitiu.::: An equilibrium point of the integro-differential equation
d:i” =::Et]]g[x(r—s}] pls) ds . . (422)
o

15 a value x* such that

X *Ig{x*} pls)ds = xtu(x*) =0

(1]

We see that x* =() 15 an equilibrium point and equilibria x* > () are given by
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gix*)=0 e 633)

Linearization about an equilibrivm point
To linedrize (4.22) about an equilibrium point x¥, we put u(t) = x(1) — X* so that, we
have,
du(t)
dt

=[x *+ufl) ]j{g(x*} +g (x*) u(t —s)+...) p(s)ds

=(x*+ult)) 4 gla™) + g {x*','l-[ ult —s)p(s)ds +.,

Q

=x*p(x®)+glx*)ut) +x* g {x’*’}J- u(t—s)ps)ds +... - (4.24)
; o
As with other types of equations such as differential equations, difference equations,
differential-difference equations, the behaviours ol solution near an equilibrium point
is thus described by the behaviours of solutions of the linearized equation. We are
thus led to study the linear integro-differential equation of the form,

—d’:;i” =au(t)+ hJ u (t —s) p(s)ds iy ACEE3)

L&)

where p(s)z0,for0<s<» and -I-p{s}d; I. To study the behaviour of solution of the
1)
equation (4.25) for a specific kernel p(s). we look for solution

u(t) = Ce"" 1 12:26)
and construct the characteristic equation,
| =ﬂ+hje_1$.p(31dﬁ =a+b L[pi }l o {42?}

where L{p(l )} is the Laplace Transform of the function p(s) evaluated at | . We shall
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consider two specific choices of p. both normalized so that Ip(s] =1 and‘[Sp{s} ds=T

L]
(average delay). We shall make use of the following formulae whenever necessary :

{a}je‘“ “ds=ul.(b} Jsr:* "ds=u—lg. (c) Iszﬂk “ds :ui; .. (4.28)
i 1] o

& \ !
Example (4.3) : Let us take Py (s1= Fc‘%. so that p(o) = 0 and rising to a maximum

al 5 = T/2, then falling exponentially. We have

Lip(h )} = J-ﬂ""“plts}ds

=iz SETU %E]sd“:_'z 7 :
T T +4T +4

4]

The characteristic equation s

PP (T
TH2 +4T +4 "
2 :
o b2 4 Sk=dl 4 +(4_i‘ﬂ‘l) —4{“+b} =10 (4.29)
T# T T

The stability of the equilibrium requires all the roots of the polynomial equation
(4.29) to have negative real parts. By Routh-Hurwitz condition all the roots of the
cubic equation

Vil oy + =0 o (4.30)
have negative real parts i’ and only il
=0y >0 1> w (431)
_4-aT _4-daT d(a +b)
Here # === bo=—g % =2

and the stability conditions are

a+b<0, aT<4and=bT <(2 —aT)? . (432)
Far the equation (4.25), a = a(x*), b = x* g'(x*)
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(i} If the equilibrium is x* =0, then b = x* ' (x*) = 0. The condition of stability
reduces to a = g(x*) < 0 which is satisfied in populition models only if there
is an Allee effect (see Chapler - 11).

(i) If the equilibrium x* > 0 then a = 0. since the equilibrium point satisfies the
condition x* g(x*)=0. Then the stability condition (4.32) redues to
D<—x"g (x*)T <4,

Example (4.4) :

|4,
Take Pz(ﬂ}=$lt‘» it

Then Lp0)} = jﬂ'l pa(s)ds

a
:l‘ll-v:_[%H }di—“-—r—
) AT +1

The characteristic equation is

e =
V1
5 1-aT (a+h)
Or, '\ -F-?—l = Tz_:ﬂ

The stubility condition that both the roots of this quadratic equation have nepative
real parts is

| —aT =0

—{a+b) =0

" From (4.24) we have a = g(x¥), b = x* g(x*),

(i) 1fx* =0, then the stability condition reduces o g(x*) < 0.which is not satisfied.

(it) If x* = 0, the stability condition is Just g'(x*) < 1, since a = 0, We thus see that
for stability there is no requirement that the average delay T not be too large,
Hence, in both the cases the stability criteria are satisfied independently of T. .
From the above example we come to the following conelusion :

“With distributed delay each delay kernel p must be examined in its own right, It
is not true that increasing the average delav always destroys stability,”
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4.5. 0 Summary:

Iu this chapter we have described both the types of discrete-time and continuous time
delay models of populations. We have discussed the process of linearization about
equilibrium and studied the critéria of stability for both the types of delay equations
with illustrative examples.
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Unit 50 Two-Species Models and Qualitative Analysis

Objectives: The object of this chapter is to make a qualitative analysis of two-species
interacting model equations,

Structure

5.1  Introduction

5.2 Two-species Model Equation : Linearization and Stability
5.3 Periodic Solutions and Limit Cyeles

54  Summary

5.1 0O Introduction

The model equations of interacting populations are usually non-lincar. Analytical solu-
tions of these equations are, in general, very difficult. The dynamical behaviors of such
can be studied qualitatively. We can find out the criteria of stability of stationary (or
equilibrium) states, we can find out the eriteria of existence of periodic solutions and
limit cycles without solving the equations exactly.

5.2 0 Two-Species Model Equations Linearization and Stability

We consider a population of two interacting species with population sizes (or densities)
x(1) and y(t). As in the case ol continuous single-species models, we assume that both
x(1) and y(1) are continuously differentiable functions of time t. Let the model equations
tor the interacting system be of the form,

dx

— =F(x, : da
at (X, ¥) (5.1a)
dx .
_=G ¥ aiw 5,]
& (x,¥) (5.1b)

Although in models we neglect many factors of importance of real populations, they
are useful first step and may represent real populations quite well,

Definition :

An equilibrium point (x*, y*) of the system of equations (5.1a) and (5.1b) is
a solution of the equations F(x, y) =0, G(x, ¥) = (). Thus, an equilibrium is a constant
solution of the system of equations (3.1a) and (5.1b) Geometrically, an equilibrium
15 @ point in the phase-spuace that is the orbil of a constant solution.
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Linearization :

One of the main tools in studying continuous models for two interacting
populations is lincarization at equilibria, just as for models for single population.
However, as linearization results can only give, information about the behaviour of
solutions near an equilibrium, they will not enable us to examine such questions as
the existence of periodic orbits. However, for the study of local behaviours about the
equilibrium the linearization is an important tool in dynamical theory.

Let us linearise the sysiem ol equations (5.1) about the equilibrium point
(x®, y*), We write u=x - x* and v = y - y* and transform the system ol equations
(5.1) to the form

du
— =0G(x*4+u, y* +v)
it ( b

dv
—=G(x*+u, y*+v
X ( y*+v)

Using Taylor’s series expansion, we have
F (x* +u, y* +v) =F (x*, y*) + F,. x*, y*) u + F, (x*, y¥) v + hy
G (x* +u, y¥ +v) =G (x*, y%) + G, (&%, y*) u+ Gy (x*, y*) v +hy

where h; and h; are functions that are small for small deviations (or perturbations)
and v in the sense thal

. hytwy) L haluy)
lim =lm =
SN e
i us

0

Neglecting higher-order terms hy(u, v) and h,(u, v), we have the linear system of
gyjuations,

d

B ety u B (et g (520
Ez(}x[x*“,y*} u+G, (x*y")v (5.2b)
di ;

The coefficient matrix of the system (5.2)
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Fo(x*,y*)  E (x*, y*
A:[ S }] (5.3)

G, (x*, y*) Gyf?{*.}'ﬂ
is called the community matrix of the system at equilibrium (2%, y*), Tt deseribes the

effect of the size of each species on the growth rates of itself and the other species
at equilibrium, In matrix form the system of linear equation (5.2) can be wrilten

us
u] [ay, agp |fw
[J y Lzr “21][‘-'} (5:4)

a“:Fx{X*r}’*L aij _Fy{x'g!}'l*)
where a3 =G (x5 "), 4y :G},{J{"'",y*] (5.5

are the elements of the community matriz A,

stability of Equilibrium
Definition : .

An equilibrium point (x*. y*) is said fo be stable if every solution (x(t), ¥(t)
with (x{0), y(0)) sufficiently close to the equilibrium remains closed to the equilibrium
for all t = 0. An equilibrium (x*. y*) 15 asympiotically stable if it is stable and if, in
addition, the solution (x(t), (1)) tends to the equilibrium (x*, y¥) as t = «. These
delinitions are natural extensions of the definitions given earlier for a single-species
population.

Let us now find the explicit form of the criteria of stability. For this, we look
for the solution of the lincarized equations (5.4), The characteristic (or eigenvalue)
equations of the system of linear equations (5.4) is given by

an-t  ap L
dy ap—)
or |2 —(a; +ap) +(a; ag —aja,) =0
or 1?2-p +q=0 (5.6)
where p=a,; +a,, =Tr A, q=(a,) 4,5 —8,; 85;) =Det A .., (5.7)

The stability of the equilibrium point (x*, y""} can be determined from the eigenvalues
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L of the system of equation (5.4) or the community matrix A given by (5.3). Tnfact,
we have the theorem,

Theorem 5.1

The equilibrium (x*, y*) is asymptotically stable if the roots of the characteristic
equation (5.6), that is, the eigenvalues | have negative real parts. According to Routh-
Hurwitz criterion the necessary sufficient conditions for the eigenvalues 1 1o have
negative real parts are

p=TrA <0, q=det A =0 (5.8)
The conditions (5.8) are the sulficient conditions ol asymptotic stability. The trace
and determinant determine the eigenvalues 1. We classify the equilibrium points

corresponding to the dilferent nature of eigenvalues

(1) I the two eigenvalues (i (b ,) are real and negative, the equilibrium is g stable
node,

(i) If the eigenvalues (i i) are real and positive the equilibrium is an unstable
node.

(i) If (I ,1,) are real and of opposite sign, the equilibrium is a saddle point.
(iv) I the eigenvalues are complex with negative real parts, we have a stable locus,

(v} 1f the eigenvalues are complex with positive real parts, we have an unstable:
focus,

(vi) Finally, if the cigenvalues are purely imaginary. the linearised system will have
i center but the original non-linear system will have a center or 4 stable or
unstable locus, depending on the exact nature of the non-linear terms, [sce Fig.

(5.1)]
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Fig. 5.1 Classification of equilibria.
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Exercises :
I. The following two-dimensional non-linear differcntial equations have been
proposed as a model of cell differentiation

dx ”

dt #

dx _ 5x2 o
dt  4+x°

(i) Determine the equilibrium points.
(ii) Linearize the sysiem of equations each equilibrium point.

(iii) Determine the local stability of each positive equilibrium point and classify the
equilibrivm points.
2. The following system of equations (in dimensionless form) appear as a model
of plant - harvivore system
dx

—=1-—lkxy(y-I
A y(y =D

dx y]
—=py ==
di }r( X

show that there is only one equilibrium and determine its stability,

5.3 O Periodic Solution and Limit Cycles

In the preceding section we have analysed the behaviour of solutions starting near an
equilibrium point. We now consider the case where the solution does not begin near
the equilibrium; in particular we wanl (0 examine the behaviowr of solutions of
systems that have no asymplotic stable equilibrium, Such system can arise in the
models of predator-prey system. We consider the two-dimensional system

dx

- =F(x,y)

dx

— =G(x,¥).

T (x,¥)
Definition

Let (x(t), y(t)) be a solution that is bounded as t = ==, The positive semi-orbit
C* of this solution is defined to be the set of points (x{t), y(1)) for t = O in the
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(X, y) plane. The limit set L(C") of the semi-orbit is defined to be the set of all puints
(X,y) such that there is a sequence of times t +»  with x(t,) XLylts) § as
n4s . PFor example, if the solution (x(1), y(t)) tends to an equilibrium point
(x*,y*)ast4» , then the limit set consists of the equilibrium point (x*, y*), If (x(t),
y(1)) is a periodic solution so that the semi-orbit C* is a closed curve, then the limit
set L(C") consists of all points of the semi-orbit CF. It is not difficult to show that
the limit sel of a bounded semi-orbit is closed, bounded and a connected set.

Delinition :

An invariant set for the system (5.9) is a set of points in the plane which
contains the positive-scmi orbit through every point of the set. Thus, for example, an
equilibrium is an invariant set, and a closed orbit corresponding to 4 periodic solution
is an invariant set. It is possible to prove, making use ol continuous dependence of
solutions of differential equation on initial conditions, that the limit set of & bounded
semi-orbil s an invariant set,

The results stated above are valid for antonomous differential equations in all
dimensions, but in two dimensions more information on the structure of limit seis 1%
aviilable. The reason for this involves the topological properties of (he plane, especially
the Jordan curve theorem which states that a simple closed curve in the plane divides
the plane into two disjoint regions - which is not valid in more than two dimensions,
The fundamental result on the behaviour in the large of solutions of autonomous
systems in the plane is the Poincare’ — Bendixson theorem,

Theorem 5.2 (Poincare’ - Bendixson ‘Theorem :

If C* is a bounded semi-orbit whose limit set L(C*) containg no equilibrium
points, then either C* is a periodic orbit and L(CY) = CF or L(CH) is a perodic orbit,
called a limit cycle, (which C* approaches spirally, eithcr from inside or fron outside,)
We shall not go to the proof of the theorem. which may be found in many standard

‘buoks on differential equations and dynamical system. We conclude the section by

stating a theorem - due to Bendixson giving a critericn implying that there can not
be a perodic orbil in a given region,

Theorem 5.3 : (Bendixson’s negative criterion) :
Consider the system (5.9), that is

dx dy
—=F i " —:G Xy e
= Ex.ﬂ, o (x.y)
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where F and G are continuously dilTerentiable Tunction of (x, y) defined on some
simply connected domain D¢ R? (by simply connected, we mean that the domain
has no ‘holes’ or disjoint portion.) 1f

dF 4G
o (£

is of one sign in D, there can notl be a closed orbil contained in T,

(5.10)

Proof : The proof is by contradiction . Suppose that we do have a closed orbil C,
with interior || , contained in D that satisfics the equations (5.9). Suppose also that
the right-hand side of equation (5.10) is of one sign. If follows that

”[F’_F Lﬂjdxd}ril] (501

Applying Green's theorem we transform the surfice integrat (5.11) to the form of line
integral, we have then

§{F dy - G dx) 20 | . (5.12)

The last integral may be wrillen as

dy dx]
¢ —] dt
.L[ dt dt : (5.13})

and since C has been assumed o satisfy system (5.9), we may lransform (5.13) to
the form '

§{FG ~GEt= iﬁﬂ.ﬂl =() e 1504)

which contradict (5.12); and so we have been mistaken in assuming the cxistence of
a closed orbit C (contained in D) that satisties the system of equations (5.9). If the
diversence is of one sign, there can not be such an orbit.

Remark ; Since a periodic solution corresponds to o closed orbit and vice-versa, the
above theorem also provides the criterion of existence of a periodic solution of the
system ol equations (3.9).

The French mathematician I, Dulac made the useful observation that the last
system (5.9) is a member of the family of dynamical systems
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dx
T B[xr } F{x1 ,}
dt ! : (5.15) -

Y
4 =By GO6Y)

that share the same phase - portrait. If one can disprove the existence of a closed orbit
for any member of the family, one can disprove the existence of a closed orbit for
every member of the family (5.15), This leads to a minor, but powerful extension of
Bendixson’s negative criterion.

Theorem 5.4 : (Bendixson-Dulae negative criterion) :

Lel B be a smooth function on D¢ R? (with all other assumplions as before). If

; d(BEF) d(BG)
I (F.G _
(F.GF T e SR (T )

is of one sign. then no closed orbit contained within D.
The above theorem does not tell us how to find B(x, y). There is no general
method for constructing B. However, we are lucky enough to find such a function.

Example (5.1) ; Consider the system

(:l_::: x(I-x—y)
-?11:-:5 (x— )y.

ooy NP RO e T LR B ) S

Xy ¥ X ox dy y
The last expression is strictly negative in the interior of the [irst gquadrant of the
{x, y)-plane, Thus, there cannot be i closed orbit that satishies the above system of
equations and that lies entirely within the intenor of the first-quadrant. So, the system
of equation contains no . periodic solution within the first quadrant,

Example (5.2) : Investigate the qualitative behaviour of the solution of the system

(-5
dt 30/ x+10

o o0l
dt ny{l y
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Solution : There are three equilibrium points (x*, y*) = (0, 0}, (30, ), (5, 12.5). The
community matrix at (0, 0) is

S

Since det A < 0, the equilibrium point (0, 0) is unstable. The community matrix at
(30, 0) is

X SO
‘”"[ﬂ —ﬁz)

This equilibrium (30, 0) is also unstable, since det A < (.
The community matrix at (5.12.5) is

s 3
% 0

Here tr A= 0, det A = 0 so0 (5, 12.5) is also unstable. IT we add the two equations
of the model, we obtain

d X |
—(x+yl=x%l-——|—
dtl:- ¥ [ 3{}) 3

Thus (x + y) is decreasing except in the bounded region —3}:{[[—%} In order that
an orbit be unbounded, we must have (x + y) unbounded, However, (his is impossible,
since (x + y) is decreasing whenever (x + y) is large. Thus every orbit of the system
is bounded. Since all equilibria are unstable, the Poineare’-Bendixson theorem implies

that there must be & periodic orbit arround (5, 12.5) to which every orbit tends as
T2,

Exercises :

(1) Determine the behaviour of the solutions in the first quadrant of the system

dx

2 = x(100—4x -2
a A y)
dy

i T ﬁﬂ_.x_

At ¥( y)

(2) Consider the system

ax = x(ax + by}
dt
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‘:I—“" = ylcx +dy)

(i) show that every trajectory with x(0) = 0, y (0) = 0 satisfies x(t) = 0, y(t) =2 0
for all 1 = 0 (Le. rajectories starting in the first quadrant remain in.the first
quadrant foroever

(i1) use Dulac criterion with B(x, y) = I/xy to show that there are no periodic orbits
it ac >0

*Mathematical Note : Routh-Hurwitz Criterion

It 15 difficult or impossible to find explicitly all the roots of the churacteristic
equation ol a multi-dimensional system. There is, however, a general criterion for
determining whether all roots of a polynomial equation have negative real parts. This
criterion known as Routh-Hurwitz criterion gives conditions on the coeflicient of a
polynomial equation

P e PR w1 R =0
under which all roots have negative real parts, For n = 2, the Routh-Iurwitz condition
are

1':’:| = U. HZ }'{]-
which is equivalent to the conditions : r A < (), det A = 0, For n = 3, the conditions
are

a, >0, a; =0, aa,>u
For a polynomial ol degree n, there are n conditions. This eriterion is uselul on
occasions, it is, however, complicated for problem of many dimensions.

5.4 1 Summary:

This chapter consists of two parts;

(i) In the first part we have introduced general model equations of two in-
teracting species, we have found out equilibrivm states and reduced model equations
to the linear form, On the basis of linear equations we have investigated the criteria of
asymptotic stability (local) ol the system.

(ii)  The second part deals with the systems that have no asympmnc
stable equilibria. For such systems we have investigated the criteria‘of existence of
periodic solutions and limit cycles. '
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Umt 6 Twu-Spemes MD['Elb : Lotka-Volterra Systems

Objectives: The chapter consisis of an account of Lotka-Volterra dynamical models of
wnteracting poplations.

Structure

6.1  Introduction
6.2 Predator-Prey Models

6.2.1 Classical Lotka-Volterra Model

6.2.2 Predator-Prey System : A Reulisliu Model
6.3  Competition Models

6.3.1 Lotka-Volterra Classical Ct;mpuhlmn Models
6.4 Mutualistic Models

6.4.1 What iz Mutualism ?

6.4.2 Lotlka-Volterra Model of Mutualism

6.4.3 Co-operative Systems
6.5 Summury

6.1 O Introduction

When two or more species interact the population dynamics of each species is effected.
In general, the 15 # whole web of interacting species, called the tropic web which make
structurally complex communities. The dynamical models of such interacting species
are provided by Lotka-Volterra systems of equations and there are three types of model
equations dealing with interactions. Three models are (1) predator-prey model

(11} competition model and (iii) mutualistic model.

In this chapter we shall study the dynamical processes involved in each type of model
systems.

6.2 O Predator-Prey Models
6.2.1 Classical Lotka-VYolterra Model

Let us consider a prey-predator system. Let x(t) be the number (or density) of prey
and y(1) be the number (or density) of predators. Lotka-Volterra model equations for
the system are
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ek G . Az

i x = bay (6.1a)
d :
?:::—u,y +Cxy weo  COVER)

The first term on the right-hand side of (6.1a) implies that the prey will grow
exponentially in the absence of the predator : the prey are limited by predator. The
second term describes the loss of prey due to predators. This loss is assumed to be
proportional to’ both the numbers of prey and predators, resulting in what is often
described as-a mass-action term. Turning to the right hand side of equation (6.1b),
we see that the loss of prey heads to the production of new predators, and thatl the
predator population decreases exponentially in the absence of prey. The system of
equations (6.1) cannot be solved analytically, but we can obtain some information
about the behaviour ol its solutions by studying the orbits or trajectories of solutions
in the (x, y) plane. Eliminating t from the Lotka-Volterra cquations (6.1), we huave

dy (dt _dy _y(-p +cx)
dxfdt dx x(} —by)

We may solve this cquation by separation of variables

ot 520

of — log x =1 logy +ex +by =h
where h is a constant of intepration. Let us write

Vix,y)=-} logx - log y +ex +by - (6.2)
So that the orbit of the system is given by
Vix,y) =h = 53
= : o dV Y :
The minimum of the function V(x, y) is given by Ezﬂ and a—=ﬂ. that is, by
; :
)
lIL}'J-*[%.E)- This is also the equilibrium position (x*, y*) of the Lotka-Vaolterra
ot 1 *—E x_;l'_
system (0.1), that 15, X*= c,_}r =

So V.

min

=S Vf.‘{,}fﬂh-x" i ]UEE = lngl_ U +A zhn
¥yt (& b

Every orhit of the system is given implicitly by an equation V(x, y) = h for some
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constant h = ho, which is determined by some initial conditions. We make the change
of variables :

x=x%+u :E+u
(&

A
y=y*ty=—+v
C

Then V(x, y) becomes,

Vix,y)=—} log [E +U}—l lug(h— + v)
¢ b

+c[p +u]+ t{l—+v]:h

¢ b

We observe that

log [-F-l +u.)=1-:ng,E +Iug[l+ﬂ]
c ¢ I

2
If (h - ho) is small, we may use the approximation log (1 + X}~ = X—% s0 that,

we have
' cu  ciu’
Ing[-E+l|]=Iﬂg1-'L+—— 5
U c. U e
I bu bic?

lo (l +vJ=!n e
*lb AT |
Then the orhits V{x. y) = h are approximated by

2
B ey +L “* =l ]ug’l‘] —bwv —|th3 Hl +cu H +hv =h

— log =
c [

ce ). h? !
or, [? u = v1=“+ulﬂg%+l log-==ih =) =h =h, (6.4)

\ .
which represents an ellipse (if b = hy) with equilibrium (x* ,}"*}:(':_ITEJHH ils centre.

This shows that for (h - h,,) small and positive the orbits are closed curves around the
equilibrium point, since the solutions run around closed orbit they must be periodic,
It is easy to see that the maximum prey population comes one quarter of a cycle
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before the maximum predator population (see Fig, 6.1).

Makimum pregator population

P poey poplation

Figiire 6.1

Historical Background :

How did this model (Volterra model) arise 7 In the mid-1920s Umbersto
D’ Ancona, an Italian marine biologist, performed a statistical analysis of the fish that
were sold in the markets of Trieste, Fiume and Venice between 1910 and 1923,
Fishing was largely suspended in (he upper Adriatic during the First World War, from
1914 1o 1978, D' Ancona observed the increase of relative frequency of some species
like Selachians (old name of Sharks and Shark - like tish) during the war years and
decrease with the increase of fishing, The relative abundance of prey, in turn, followed
the opposite pattern. Why did this happen? At that time Umberto was engaged to
Luwisa Volterra an ecologist. Umberto posed this question Lo Vito Volterra, his future
father-in-law and a famous mathematician, Volterra (1%26) constructed a model known
as Lotka-Volterra model (because A. J, Lotka (1925) constructed a similar model in
4 different context about the same time) based on the assumption of that fish and
sharks were in predator-prey relationship,

Example (6.1): Show that the period of Oscillation of prey and predator pofmlmiﬂn
sizes of Lotka-Volterra system is 2z jp
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Solution | Linearing the system of equation (6.1) about the non-trivial equilibrium

(‘:/:l/ﬁ) we have Lhe linear equations

du > _b_”\.r (6.5a)

di C

dy hc : :

Bhas i 6.5

dt b . (0-3k)
It i5 easy to combine both the éguations (6.5a) and (6.5h) 0 give

d*u ,

—=—j|Lu

i H (6.6)

which is the equation of a simple-harmonic Osillator with frequency 2—‘
2.2 Predator-Prey System : A Realistic Model

The Lotka-Volterra mode] represented one of the trivmphs of early atlempts at
mathematical modelling in population biclogy. The dynamics of predator-prey system
modelled by Volterra is interesting, but it is unrcalistic and there are some flaws in
the model. The model is structurally unstable and 1s extremely sensitive to perturbation.
A small change in the initial population size may produce a change to a different
periodic orbit, while the addition of a perturbing term to the system of differential
equation may eliminate the balanced neuntrally stable family of periodic orbils that we
have observed. We, theretore. need fo loolk at other predator-prey models.

We now consider a more realistic model of predator-prey system by assuming
that in the abscence of predators. the prey specics grow logistically

ﬂ::-N[l—E]-uNP (6.7)
dT k

N _ yNP—mP

dT

where N is the prey-population size, P that of predators, we have written time as T
(rather thun t) because we will soon rescale this variable. To ease the analysis, we
non-dimensionalize all the variables step and by step.
We use the first dimensionless variable

N

f =

K

Then the system (6.7) becomes

(6.8)



dx

~Z = x(l - x) —cxP

v rx(l —x) —cx (6.9a)

dpP

— = bkxP —mP

aT m (6.9b)
To simplify (6.9b), we use the dimensionless variable

c

i (6.10)
and eliminate P, to have

d

ﬁ:m{t—x—” (6.114)

dy

— =hkxy - '

5 Xy — my (6.11b)

Finally, we write t = ¢ T (6.12)

K d i El‘ .Ei.—_d _d_—ri

and note that o (6.13)
Then the system of equations (6.1 la) and (6.11b) takes the [orm

4 :

)y —

= il=-x-y) (6. 14a)

dy _ bk [,; _E) |

rREEE e (6.14b)

we wrile T (6.15)

With these, we have the system of equations

d -
d—J:: _}[{1 - X —-j.l'} (ﬁ, I ﬁd}
dx =h(x+ ) - 6.16b
% xe . (6.16b)

The simplified model {6.16) has three equilibria : (x*, y*) = (0, 0), (1. 0}, (0, L =0 ).
These equilibria occur at the intersections of the prey and predator zero growth
isoclines®, [see Fig. (6.2}]
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|
G e - 1 X

Fig, (6.2) ¢ Predutor and Prey zero growth isoclings,

[Zero-growth isoclines are the curves in the (x, y) plane or phase-plane along which
dx

d
I-——Dand d_!::ﬂ' These curves should properly be called nullclines.

The community matrix of the system (6.16) is

[I-Zx—y -x }
A=
b bt )y,

A (x*, y¥) = (0, 0) the community matrix is

p‘—l 0
_[D L) }_ v (6.18)

Eigenvalues } =1,
Let det A=-fs <0.50(0,0) is a saddle point (Fig. €.3), At (x*, y*) = (1, 0), the
community matrix is

= 9
A=[ﬂ O J . (6.19)
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Eigenvalues =—L} (1 )detA s ( ).

Ifo > 1, det A =0 which implies (1, 0) to be a stable node, If1 < 1, det A < 0 which
implies (1, 0) to be a saddle point (Fig. 6.4) At (x*, y*) = (¢, | —1), the community
matrix is

- A )
Al o iy KOE0)
The characteristic equation is '
Vil o (- ) =0 o ITEEED

By Routh-Hurwitz crilerion the equilibrium (1, 1 —u ) 15 stable if ¢ < | end unstable
if 0 = | (Fig. 6.5). The eigenvalues are given by

2 12
e *’ﬂq @= (6.22)

If we examine the discriminant, we see thal we have a node if

f }1-1-45 : . v 16.23)

and a focus if

e 6.23
|4 i)
The model does not show any periodic orbits — in contrast W classical Lotka-

Volterra system. The addition of a small amount of prey-density dependence has
destroyed the family ol periodic orbits that we have observed in the clussical Lotka-
Volterra model. It leads to the conclusion that the classical Lotlka-Volterra system is
structurally unstable,
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Fip: 6.3 Pliase porteant forn =)

b3

(L8]

Fig. b4 Phase porimil fara < 1= 80 1+45
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Fig. 6.5 Phase portrait fora < 1, a < 4f(1+4)

Example (6.2) : Show that the system of equations (6,16) do not contain any periodic
solution in the first quadrant of (x, y) plane. (see example (5.1), Chapter-V).

Remarks : Predator-Prey system is the most dynamic of all interacting populations.
There are many other things o be discussed. We have discussed the eriterion of
periodic orbit and its significance in the predator - prey model equations. We have
not discussed limit cycles and its ecological significance. What biological factors
create limit cyeles? The inclusion of 4 more realistic functional response is one such
factor. The functional respanse is the rate at which predator captures prey. Heretofore,
the functional response was a linearly increasing function of prey density, However,
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predator may become satiated. They may also be limited by the handling time of
catching and consuming their prey. This limit on the predator’s ability can have a
profound cffect on the dynamics of a predator-prey model, There are four different
functional response curves. Predator - Prey models with functional responses cun
exhibit limit cycles, bifurcation and chaotic behaviour in the dynamics of the systems,
These are. however beyond the introductory course.

Example (6.3) :

Determine the qualitative behaviour of a predator-prey system modelled by

d—x-x[l—j—]— B
dt 30/ x+10
dy [ xy _l)
dt y x+10 3

Solution

We have studied this system in Example (5.2) of Chapter - V and shown that
every orbil approaches a perindic orbit around the (unstable) equilibrium
(5, 12.5). Thus the species co-exist with oscillations.

Exercises :

(1) Determine the equilibrium behaviour of a predator-prey system modelled by
s [ 5 _EJ
gt \x+10 3

dt 13/ x+10
(2) Show that the equilibrivm (x*, y*) with x* =0, y* > () of the predator-prey
model '

dx - fﬂ(l = i)_ ﬂ-&
dt k

a9y _, (i_ aB )
& Tlx+A A4B

is unstable if k > A + 2B and asymptotically stable if B <k < A + 2B.

(3) Investigate the stability of the equilibrium of the chemostat modelled by the
equations
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dt C+A

d ib) J acy
—— T C —————
dt e ) C+A

where y is the number of bacteria and ¢ is the concentration of nutrient in the
chemostat.

6.3 O Competition Models

6.3.1 Lotka-Volterra Classical Competition Model

We consider the classical model of competition due to Lotka and Volterra. The
Lotka-Vollerra competition model is an interference competition model : two species
are assumed to diminish each others per capila growth rate by competition.

We begin with two species, with population sizes X (t) and x,(1) at any time t.
We assume that each species grows logistically in the absence ol the other, The
maodel equatiors are

| dx, X i
PR Sjeeicxd WSS )y e M - ;
x, dt fu[ kK 13 et = L0 250)

| dx Ky
- = "z[] --ki- _—fz'm] . (6.25h)
Each individual of the second species causes @ decrease in the per capita growth of
the first species; and vice versu, To parameterize this effect, we have intraduced a
pair of competition coefTicients o, and 1 ,,, that describe the strength of the effect
of the species 2 on the species | and of specics | on the species 2 respectively, The
system of equations (6.25) can be rewritten as

dx Y
dtl =k_llx|{k| —X| = 2 %3) o (6.26a)
dx; _ 1

Kalks — K = 5y XD 6.26
it kzz':z 2 = a1 % (6.26b)

The complete characterization of the dynamics of the eguations (6.26) revolves around
the orientations of zero-growth isoclines. The x,—zero growth isoclines given by

dxa
—==1), are
dt

X, =0 | )
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HI'I:d KI = k-z e | -z]xl (T {ﬁ.z?b}
|see Fig. (6.6)]. Below the line given by (6.27b), x, increases; above this line, x,

; ; ; - dx
decreases. The x| - zero growth isoclines in turn, given by d_tlz 0, are

X, =0 o (6.28a)
Below the line given by (6.28b), X, increases; above Ihis, x, decreases (see Fig, 6.6)
X, X,
|
K S
K: =1 _:"w.
Biy 1%
\ l TS V==
T : :_ e 7S §
0 el . b 3 X
0 Kiay, - 0 K,

Fig. 6.6 @ Zero-growth isoclines,

One of the isoclines (6.27b) and (6.28b) may be entirely above the other.
Alternatively they may cross each other. There are four classes, depending on the
relative position of x, and x, intercepis of these two zero growth isoclines. Each case
corresponds to a different phase-portrait. Let us consider each one in turn,

Case (1) ; 1t each intercept of the lines given by (6.27b) is greater than the
corresponding intercept of that for (6.28b), so that

k, = LTI > XL
2 k,
k ¥ (6.29)
_1}k ar 'I 2] {_1
gy k)

x, excludes x, [see Fig. 6.7]. Thus, if species 2 has a relatively large effect on species
| and species | has a relatively small effect on species 2, we expect that the species
| will go extinct and the species 2 will approach its carrying capacity.
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Case (2) : If the inequalities (6.29) are reversed
k k
Ao S 213"—?' (6.30)

Ko k)

so that the species 2 has small effect on species 1 and species | has large effect on
species 2, the compelitive outcome is also reversed : species | approaches its carrying
capacity and species 2 goes fo extinction (see Fig. 6.8).
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C 3y« If 0 ::-—k' [ :-v-—kz 6.31
: 12 . 21 ;
ase (3) k, K, (6.31)

In this case both the isoclines cross each other, In this case interspecific effects are
large for both species. Two equilibria (k1, Q) and f'D k} corresponding to the
exclusions of one or the other species, are now both qtable nudea (see Fig. 6.9). One
or the ather of the species will go extinct, depending on the initial conditions. There
is o saddle point that lies between the two nodes,

Case (4) : I 0 “'-h-" "'-k_z 6
ase (4) : 12 k, 2 K, av 4B32)

the equilibria I.'k1. 0) and (0, k,) are unstable saddle points and trajectorics are drawn
towards a stable node n the interior of the first quadrant. (Fig. 6.10).

Example (6.5) : For the competition model (6.26) show that there is no closed orbits
(or periodic solution) within the first quadrant of (x;, x;) - plane.

Solution : Recall Bendixson - Dulac negative crltermn Let B(x,,x5)=—— Since the
divergence Xi%a
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BRSO R 8 . (6.23)
ox, dx, k% kyx,

is strictly negative in the interior of the first quadrant, we can be sure that there are

no closed orbits (or periodic solutions) contained entirely within the first quadrant, -
For three out of the four cases we have considered, ont species successfully

excludes the other, Only in case (4), where interspecific effects were weak relative

to intraspecific effects, did the two species coexist. This is the basis for Gause's

“Principle of Competitive Exclusion™, -The experimental evidence is somewhat

cquivocal and there ts considerable doubt about the universability of the principle,

6.4 Mutunalism Models

6.d.1 What is Mutualismn

Mutualism is aa interaction in which species help ene another, The interaction
may be ;
(i) lacultative meaning that two could survive separalely
or (ii) obligatory, meaning that each species will become extinet without the
assistance of the other,
Again mutualism can be classified into four types :

(1) Seed-dispersal mutualism : A great number of plants rely on amimals to carry
their seeds to favourable siles. Plants frequently produce [ruits and nuts Lo
attract and rewards dispersal agents. Squirells are undoubtedly the most familiar
cispersal agents.

(b) Pollination mutualism : Pollination is the transfer of a plants” pollen grains
before fertilization. In gymnosperms, the transfer is from pollen producing cone
directly to an ovule. In angiosperms, the transfer is from an anther 10 a stigma.
Most gymnosperms are wind pollinated and most angiosperms are animal
pollinated, Angiosperm tlowers often reward pollinators with nectar,

(¢) Digestive mutualism ; The guts of many animals are fille with bacteria, yeast
and protozoa that help to breakdown food, Ofien, the host is unable to digest
the food on its own. Cattle, deer and sheep rely on bacteria to breakdown plant
cellulose and hemi cellulose into digestive sub-unifs. =

(d) Protection mutualism ; In 1874, the famous naturalist, Thomas Belt, des.cuhed
a remarkable mutualism - between ants and acacias, The genus Acacia contains
a large number of trees and shrubs native to warm parts of both hemispheres.
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Many of the plants in this genus house, suppoit and employ ants. The ants
guard the acacia against hervivores predators.

6.4.2 Lotka-Volterra Model of Muotaalism

Let us consider a simple model for a one-to-one facultative mutualism. This will be
followed by obligatory mutualism, These two models are Lotka-Volterra competition
models equation in which the negative competitive interactions has been turned into
positive mutualistic interaction.

Let us consider a system of two species with population sizes (or densities) x,
and X,, Each species grows logistically in the absence of the other. Each species has
per capita growih rate that decreases linearly with size (or density)

e (' _i'] | (6.34a)
Xy (it k. i
| d12 . xS
=pl1- :
X, dt rz[ kzj . 16.34b)

The introduction of mutualism between the specics leads to the equations.

i%%[j_m. 4 n]

X, dt k, {6.35a)
1 dx, (Xy =1 &)

Ay = {— 2 3 el .

x, dt Iz[ K, } 6.35b)

where the parameters 5, and ¢ |, measure the strength of positive effect of species
2 on species | and of species 1 on species 2 respectively. The system of equations
(6.354) and (6.35b) can be written as '

g

dt =k—[x!“‘l =%+l g Xy) ' . (6.364)

E.x—g: -‘lxz{kz = Xa +ll 41 %)

dt ks ¢ o (6.36h)
This is a model of facultative mutualism so far as

n=0>0 k =0k; >0 ne KT

Each species can, in other words, survive without its mutualist.
Let us look at the zero-growth isoclines for this system. The x, - zero growth

dx
isoclines given by i Dare
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Lz =n [ﬁESﬂ}
md X3 =K +44, X, w (6.38b)

[see Fig. (6.11}].

x|
Fig. (6.11): x5 - zero growth isoclines, k, > 0,

Below line (6.38h), Xy increases; above this ling, x, decreases.

The x| - zero growth isoclines given by %:ﬂ, are
|

Xy =0 w  16.39a)
and X, =k, +1 ;5 X, o 16.39b)
(5ee Fig. 6.12)
L5}
: — {
i IJ‘:l g
i f T

Fig. 6:12 : x; zero-growth isoclines; k, = 0.
To the left of line (6.39h), X increases; to the right of this line, x | decreases. The
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zero-growth isoclines (6.38b) and (6.39b) may either converge or divergence. They
converge il

|
— >0 g

f 12

or g g 9> (6.41))
In this case, the two isoclines cross em:'h other and orbits approach a stable node in
the interior of the first quadrant (see Fig. 6.13). Since the slopes of the zero-growth
isoclines are positive. the coordinates of this equilibrium are greater than the carrying
capacity k and k! each specics surpasses ils carrying capacity because of its mutualist,
If o8 |"'~'1 o (6.41)
zero-growth isoclines (6.38b) and (6.39b) diverges. Now, ThE zero-growth isoclines
do not cross and there is no non-trivial equilibrium in the first quadrant. The population
undergo unlimited growih (see Fig. 6.14) in what has been called “an orey of mutual
benefaction™.

]
24 ; -
T T T T T , "
.' 1 I‘ I.‘u \ '\. i ] r » A 1 4 /p— - e o A .-J
b= 'I L FR GO T L R e SR { A& = ¥ F ¢« o
T T T e S T ldqy e = « # 4 & & 4
e = v b v = = o w0 o 4 4 4 A
| - ;
¢ v ¢ AN S I LR A R LI
d & o« o o II‘-' i ¢ ¢ & £ & 84 | .i b
' PR SR A R S I | i ;
05 d £ # & 4 § X > v = $ ¥
05 d4 « o« & 4 4 1 b b W%
£ oduw ot o A N A
. 4 4 0 4 & 4L N v
f o o ot A 1"!;t . . e - .
D - T T 1 T T El E e O o A A B e T
T | T 1
] U ; 4 4 0 05 | 1.5 2
Fig. (6.13) Facultalive mutualism Fig. (6, 14); Facultative mutuatism
for 0 @1 5 <1 for o 2 4, >1

Equations (6,36a) and (6.36b) can be used as a model for obligate mutulism if we

assume that
n<0.n<0.k <0,k <0 v (6.42)
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Neither species can now survive on its own; each species is banking on the other to
save il. Equations (6.38) and (6.39) are still the correct equations for Xy and x, zero-
growth isoclines, However, since kl and k, are negative, the lines (6,38b) and (6.39b)
look rather different [see Fig. 6.15 and 6.16]

Xi {8
-
1
i )‘/,’
]
| ¢
| v
| r.!!
I #
| -
; 4
' !/:z - —
/’ |
- 1
— ,/ 1
T ’ I
: il |
i i |
i !
|
K?
Fig. (6.15) : x5 zero-growth isoclines. Fig. (6.16) : », zero-growth isuclines,
ky <0 . k<@
We are again contronted by two cases, In the first case

|1 J.E 21 ‘:l e (6‘.43}

and the two isoclines (6,38b) and (6.39b) do not intersect in the first quadrant. The
stable node at the origin is now the only equilibrium. Both populations decay to zero
(see Fig, 6.17). the two species rely on one another, but interaction is 0o weak to
rescue either species.
I the interaction is strong .

Fag oz >l we (6.44)

the isoclines (6.38b) and (6.39b) do intersect in the first quadrant (see Fig. 6.18).
There is now a saddle point in the lirst quadrant. Tf mutualist densities are Tow, both
populations go extinet @ the interaction is strong but there are too few mutualists to
rescue cither population. If mutualist densities are high, both species increase in
another “orgy ot mutual benefaction”, Orbit now divergence to infinity

[see Fig.6.18]
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6.4.3 O Cooperative Systems

All orbits of two-species mutualism models that we have discussed appear to tend
to equilibrium or to diverge to infinity. Is there any limit eycles that we hiave missed?
Previously we have used the Bendixson - Dulac negative criterion to prove that
systems do not possess limit cycles. Now we can use the fact that our models are
cooperative.

Definition : The system

dx
EL:r{,;sz} o (6.45a)
dx
d—f=g{xi_xz? .. (6.45b)

defined on . g2, is cooperative il
LETI o (6.46)
o, dx,

for all (x;,x;)¢ D

Example (6.6) :

I,Et f[xl.x2}=;—'xl{k1-xi 40 12}(2} aia {6-4?3}
1

T

g[x,,xz}:k—zx; (kg —%; +15;%)) v (6.47h)
2

an the (invariant®) Hirst quadrant X, (xi, x;) — plane. Since

df n

— = X, 20 : ;

TR X, (6.48a)

B 6.4

ax, 21 K 2= we (6.48b)

those mutualism models are cooperative on this quadrant,

Theorem (6.3) : The orbit of a system that is cooperative either converge to equilibria
or diverge to infinity,

Proof : Let us look at the (X, x;)plane (Fig. 6.19). Each trajectory of a planer system

generates an orbit in this (X, X,) plane. If the planer system that we are looking at
is everywhere cooperative, the first quadrant of the (X}, X,) plane is invariant*. To see
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this, we consider an orbit that attempts lo leave the first quadrant by crossing the
positive X, - axis, In the light of the equation (6.45a) and our definition of cooperative
system,

d (k)= dle = of dﬂ+i dﬂ
dt At dxy dt o 9xy dt (6.49)
of dx dx
=— —250 (since %, =—2L iszeroon X ,—axis
el =il L (6:49b)
on the positive x, - axis. The orbit cannot cross the positive X, - axis; for when the
orbil crosses the positive X, - axis, we musl have %, =?=D so that X; ¢uan not.
i t

increase with time. By a similar argument the orbit can not cross the positive X -
axis. Finally, the orbil cannot cross through the origin, since this would imply that
the original trajectory passes through a rest point. Similar argument also shows that
the third guadeant is also invariant™.

Ultimately fas = =) X, and X, are of constant sign. 11" we start in the first or
third quadrant, we will stay there forever 1 we start from the second or fourth
quadrants, we may either stay in those quadrants or we may enter the first or third
quadrants; which are invariants, Either way, x; and x, are ultimately monotonic
function at time, This precludes limit eyeles and implies that trajectoris either approach
equilibria or diverge to infinity.

I

lnvariant

i
: IV

Inyariant

Fig. (6.19): (X, 5} plane

* A set (a region) is invariant if an orbit starting from this set (or region) will stay
there forever.
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Exercises !
I. Determine the outcome of the competition the system

dx
—=x(100 —4x -
m ( y)

dx
—=y(60—x—y).
5 el=x y)

2, Whal is the outcome of a competition modelled by the system
dx 2
—=x(2-x—-x" —y).
dt e ¥)
dy 2
— = y(16—2x—x"—y)
1 y( y)

3. For the mutualistic system
dx
—=x(=20-x +2
ST y)

dy :
= =y(-504+x—2y),
7 ¥ x—2y)

Find the equilibrivm points and determine their stabilities.

6.5 O Summary

This chapter consists of three parts® !

(i) The first one deals with the classical Lotka-Volterra system and the modification for
a realistic model of predator-prey systems,

(1) The second part deals with Lotka-Volterra model of the competition system,

(i11) The third deals with the Lotka-Volterra model of mutualism or symbiosis. It also
includes the mathematical analysis of co-operative systems.
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7.1 Introduction : Functional Groups

Objectives. The chapter consists of a brief account of dynamical modeling of ecosys-
tems.

Structure:

7.1 Intraduction: Functional groups

7.2 Linear Food-Chain: constant production
7.3 Logistic primary production

7.4 Material eycling: Linear Tropic Interaction
7.2 Summary

Two useful tools of studying a natural system are the laws of conservation of energy
and mass, The study of ecosystem form the point of view of energy-flow (or energeties)
was advocated by Odom and Odum (1975). The early ecosystem models, which used
- energy as the currency were not successful everywhere, Although energy inflows to
many systems can be estimated quite accurately, the outflows are, however, hard to
define and measure precisely, More recent works reveal that the energy flows inside
an ecosystem oceur in the form of chemically bound energy and are thus accompanied
by flows of elemental nutrients. The inflows and outflows of nutrients are more
easier to define and measure than their energetic counterpart. Modern ecosystem
models thus adopl one or more essential elements, usually carbon, nitrogen or
phosphorus, as their ‘currency’. For the study of the flow of nutrient we focus from
populations to functional groups - that is, groups of species which cause the passage
of nutrient from one place to another, For example, in a model of grassland ecosystem
we might skate over wealth of biological details and differentiate only between plants
which are edible by harvivores and those which are not.

7.2 Linear Food-chain : Constant Production

(i) Dne Level system :

We consider an ecosyslem with a single functional group, which we shall call
‘plants’, We take carbon biomass as our currency and write the current carbon biomass
density of plants as P(1) gf;afmz_ We assume that photosynthesis produces new biomass
al a rate o ge/m*/day and that a plant of earbon mass o loses carbon through mortality
and respiration at a rate E 4 gelday. The dynamics of this very simple system is
described by a single equalmn
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dP
e 4 .0 (7.1)

which has the steady-state,

¥

| P

P i (7.2)
Thus the steady-state carbon density of plant (called steady-state standing stock) is

given by the product of the primary production rate P and the average residence lime

of a carbon atom in a plant [%p]. Let P = P* + p, p being the deviation from the
steady-stale value, then the equation (7.1) reduces (o

dp
= e
dt P {7.3)

implying the stable steady-state for p > 0.

(ii) Two-level System : ,

We now add a second functional group (‘hervivores') to our ecosystem. Let
H(1) ge/m?® be the carbon biomass density of these organisms. We assume thal
respiration and mortality remove hervivore carbon at 4 per-capita rate § p/day, that
hervivores feed exclusively on plants, with a linear [unctional response characterized
by an attack rate ¢ j mjfday.fgr:. This implies that in the presence of plant carbon
density P, a hervivore of weight ¢ consumes plant carbon at a rate 0 Py gc/day. The
system dynamics is described by a pair of coupled differential equations

dp

=t P PH Ao (7.4)

% 1 PHH H e s (1.5)
This system has two steady-states :

P*=§—|:.-, H* =5Lh{? + op%) (7.6)

=Ll Hr=0 (1)

Let us interprete the biological significance of the first-steady state (7.6). For a
biologically possible or sensible solution, H* = 0. As a result we have,
p b :
iy il
b, (7.8)
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which implies the decrease of steady-state standing stock of primary production with
the presence of harvivores.

To study the local stability, we put
_ H=H*+h P=P*%+p (7.9)
Putting these values in (7.4) and (7.5) we have the linearised equations,

%T =1 H*P
- : ) (7.10)

Secking the solutions like e shows that the eginevalues | must satisfy the characteristic
equition

1240 , ¢ g HY 14 2PHHY =0 (7.11)

The constant term snd the coefficient of | are both unequivocally positive for
biologically sensible positive) steady-state. For the stability of the steady state (7.6),
the eginevalues, that is, the roots of the characteristic equation (7.11) must have
negative real parts.

The system of linear food-chains can be extended to a three-level system by
Caddition of a lunctioral group of “consumers’™ which eal (only) hervivores,

7.3 Logistic Primary Production

The models discussed in section (7.2) are based on the assumption of constant
primary production. Although these models are acceptable approximations for some
systems, for many other the rate of primary production depends on the stunding stock
of primary producers. To investigate the imphcation of this, we shall modify our
model of linear food-chuin by assuming that in the absence of hervivory, the plant
carbon biomass grow logistically to a carrying capacity k, that is,

dP P] ]
08 02
dt rp[ k Wike)

Two - level System :

We investigate a very simple system, in which the hervivores are the only
additional tropic levels. We retain all other assumptioas of section (7. 2]1 so that the
system dynamics are described by the equations,
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dp p
L S
dt ”:'[ k) th

7.13
B, PHA L H (30
dt
This system is mathematically identical to the predator-prey model with logistic prey

and linear predator functional response. It has two steady-states (K, 0) and (P*, H*)
where

pr_tn H;..zL[] _Pf] (7.14)
1 k g h K

The co-existence stendy-state (P*, H*) is biologically sensible, that is, P* > 0 and

H* = {), provided the required plant carbon biomass is iess than the carrying eapacity,

thal is,

K2 b (7.15)

Small deviations about steady-state (P#, H*) are described by

dp _rP*
P T p-g, P*h
gk (7.16)
dh
— =1 HH‘-
dt h p

and hence a characteristic equation,

- "

H+'i1 £ 2P*HE=0 (7.17)

Since both the constant terms and the coefficient of & in this characteristic equation
(7:17) are positive For all biclogically sensible steady-states, we see that all such
steady-states are necessarily stable. We can extend the model by addition of u consumer
functional group o our logistic primary production model,

With a basic discussion of linear food chain and logistic primary production we
close up the chapter o ecosystem. The models of food-chain and many other ecosystem
problems are similar in both structure and dynamics tv those which we have set out
to describe imteracting groups of unstructured population. We can, therefore, use our
knowledge of such models to inform ouwr view of the likely propnerties of ecosystem
models,
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7.4 O Material Cycling : Linear Tropic Interaction :

In the previous sections we have considered the passage ol elemental malter such as
¢arbon, phosphorus er nitrogen. and resumed the primary production rate either to be
a constant or a logistic function. The primary production is limited by some factors
other than the elements being modelled : for example light. However, in closed
system the elemental matier needed for primary production must be provided through
recycling - by morlality and respiration in the case of carbon, or by mortality and
excretion in the case of phosphorus and nitrogen. Few ecosystems outside the laboratory
are closed to carbor, s0 in this section we explain the dynamic implications of
closure of an elemental nutrient (i.e. nitrogen and phosphorus).

A Nutrient - Plant System :

The system model is very simple, it consists of a nutrient compartment,
containing limiting natrient at density Ni1), and the plant functional group, which we
now characterise by its limiting nutrient density P(1). We assume that the plants have
a lincar response, with slope ap and a mortality excretion rvate ip. The system is
closed, so any nutrient taken up by the plants is lost o the free nutrient pool, and all
nutrient lost by plants due to death and excretion is immediately (or instantaneously)
added to the nutrient pool. With these assumptions, the system dynamics are,

dp

a=ﬂ FN-P—E I-‘P .
v (118

E:ﬁ P4 PN -

dl P P

Equations (7.18) imply that

dN + dP _ E{P'H'-J} =0 F A L)

de  dt ot

In other words, the total quantity of nutrient contained in the system is constant as
it should be for a closed system. Representing the total amount of bound and unbound
nutrient by S, the dynamical equations (6.18) reduce to

dP

o JNP5 P N(H) +P(1) =8 AR 75
Eliminating N, from (7.20), we have,
dP o :
=l S pll——=tp
T B p}[ E } v HT2D)
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Writing =0, sS4 o Xy =—F_ the equation (7.21) reduces o the form of logistic
: .
equation
dP P
d_t= |pP|:[ _K_I.J 3 (7.22)

From (7.22), we can conclude that the model has an unstable steady-state at P = 0
and a globally stable steady state at P:KI1 =(5—4 i f p}.

7.5 0 Summary

In the introduction (section 7.1) we have explained the concept of functional groups for
the modeling of ecosystems, Tn sections(7.2) we have discussed the linear food-chain
model of ecosystem with constant production. Tn section (7.3) we have modified the
constant production model to the logistic primary production model. In section (7.4)
we have discussed the basic concept of material cycling in functioning in ecosystems.
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"For dealing with any natural phenomena-especially one of a vital
nature, with all the complexity of living organism in type and habit—
the mathematician has to simplify the conditions until they reach
the altenualed character which lies in the power of this analysis"

—Kerl Pearson
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Glossary of Ecological Terms

Abiotic : not biological or not relating to living organisms.

Abundance ; large amount or large number of something,

Algae : tiny plants living in water or in moist condition.

Allele : one of two or more alternative forms of a gene; which can imitate each
others form.

Allelopathy : harm caused by one plant to another plant, usually by producing a
chemical substance, :

Anther : part of a stamen which produces pollen.

Biomass : all living organisms in a given area or al a given tropic level expressed
in terms of living or dry weight,

Biome : large ecolog.cal region characterized by similar vegetation and climate (such
as desert, the tundra ete.).

Bion : single living organism in an ecosysten.

Biota : flora and fauna of a region.

Bloom : (a) [lower; the blooms on the orchids have been ruined by frost (b) algae
bloom = mass of algae which develop rapidly in a lake, 2. Verb, to flower. The plant
blooms at night, some cacti only bloom once every soven years.

Carrying Capacity : maximum number of individuals of a species that can be
supported in a given area.

Cellulose : carbohydrate which makes up a large percentage of plant maller.
Community : group of different prganisms which live together in an area, and which
are usually dependent on each other for existence.

Diversily : richness of the number of species in an area.

Ecology : study of relationship among organisms and the relationship between them
and their physical environment.

Deep ecology : extreme (orm ol ecological thinkmg where humans are considered
as only une species among many in the environment.

KEcological balance (or balance of nature) : situation where relative number of
organisms remain more or less constant. :
Ecological succession ; series of communities of organisms which follow on one
after the other, until a climax community is established.

Ecospecies : subspecies ol a plant.

Ecosphere : biosphere, part of the carth and its atmosphere where living organism
exist,
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Ecosystem : system which includes all organisms ol an arca and the environment in
which they live. '
Etholog : study of the behaviour of living organisms.

Evolution : heritage changes in organisms, which take place over along period
involving many gencration.

Genetics : study of the way the characteristics of an organism are inherited through
genes.

Genome ; all the genes in an individual.

Genotype 1 genetic composition of an organism.

Genus : group of closely-related species.

Green house : building made mostly of glass, used to raise and protect plants.
Green house effect : elfect produced by accumulation of carbon dioxide crystals and
water vapour in the upper atmosphere, which insulates the earth and raises the
atmosphere temperature by preventing heat loss.

Habitat: typc of environment in which an organism hves.

Heredity : occurrence of physical or mental characteristics i offspring which are
. inherited from their parents. '

Immune : protected against an infection or allergic disease.

Niche : place in an ecosystem which a species 15 specially adapted to fit,
Ecological Niche : all the characters (chemical, physical and biological) that determine
the position of an organism or species in-an ecosystem, (commenly called the “role”
or “prolession” of an organism e.g. an aquatic predator, a lerrestrial hervivore.
Omnivore ; animal which eats any thing, both vegetation and meat,

Phenotype : physical characteristics ol un organism which its genes produce, such
as brown eye, height ete. compare genotype.

Pisei culture ; fish ftarming; the breeding fish for food in special enclosures.
Terrestrial: referring to land: terrestrial animals : animals which live on dry land,
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